数学物理学报

• 论文 • 上一篇    下一篇

一类耦合非线性Klein-Gordon方程组的驻波

甘在会;张健   

  1. 四川师范大学数学与软件科学学院 成都 610068
  • 收稿日期:2004-12-28 修回日期:2005-11-10 出版日期:2006-08-25 发布日期:2006-08-25
  • 通讯作者: 甘在会
  • 基金资助:
    四川省教育厅青年基金(2005B023)和四川省基金(SZD0406)资助

Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations

Gan Zaihui ;Zhang Jian   

  1. College of Mathematics and Software Science, Sichuan Normal University, Sichuan 610066
  • Received:2004-12-28 Revised:2005-11-10 Online:2006-08-25 Published:2006-08-25
  • Contact: Gan Zaihui

摘要: 该文在二维空间中研究了一类耦合非线性Klein-Gordon方程组的初值问题.首先用变分法证明了具基态的驻波的存在性;其次根据这个结果证明了该初值问题解爆破和整体存在的最佳条件;最后证明了具基态的驻波的不稳定性.

关键词: 非线性Klein-Gordon方程, 驻波, 爆破, 不稳定性, 变分法, 基态

Abstract: This paper is concerned with the initial value problem of a class of coupled nonlinear Klein-Gordon equations in two space dimensions.
The authors first establish the existence of the standing wave with the ground state by using variational calculus, next the authors derive out the sharp conditions for blowing-up and global existence in terms of the result, at last the authors show the instability of the standing wave with the ground state.

Key words: Nonlinear Klein-Gordon equations, Standing wave, Blow up, Instability,
Variational calculus,
Ground states

中图分类号: 

  • 35L15