数学物理学报

• 论文 • 上一篇    下一篇

Apollonian等距与Mobius变换

褚玉明   

  1. 湖州师范学院数学系 湖州 313000
  • 收稿日期:2005-01-08 修回日期:2006-01-06 出版日期:2006-08-25 发布日期:2006-08-25
  • 通讯作者: 褚玉明
  • 基金资助:
    国家自然科学基金(10471039)和浙江省自然科学基金(M103087)资助

Apollonian Isometries and Mobius Transformations

Chu Yuming   

  1. Department of Mathematics, Huzhou Teachers College, Huzhou 313000
  • Received:2005-01-08 Revised:2006-01-06 Online:2006-08-25 Published:2006-08-25
  • Contact: Chu Yuming

摘要: D是R2中至少包含三个边界点的单连通区域, 对任意x, y∈ D, aD(x, y)表示D中关于x, y两点的Apollonian度量.1998年A. F. Beardon猜测: 若f: D→ D是Apollonian等距映射,则f必是D上的Mobius变换.在该文中作者对D是圆的情况肯定并证明了A. F. Beardon的上述猜想

关键词: Apollonian度量;等距;Mobius变换;圆

Abstract: et DoverlineR2 be a simply connected domain with boundary containing
at least three points, and for any x, y∈ D, aD(x, y) denote theApollonian metric in D with respect to x and y. A. F. Beardon gave the following conjecture in 1998: If f: D →D be an Apollonian isometry,then f is a M"obius transformation.In this paper, the author affirms and proves the conjecture when D is a disk.

Key words: Apollonian metric, Isometry, Mobius tranformation, Disk

中图分类号: 

  • 30C65