利用重合度理论研究了一类具时滞的Liénard型 方程x''+f_1(x)|x'|^2+f_2(t,x(t),x(t-\delta(t)))x'+g(t,x(t-\tau(t)))=p(t).获得了该方程存在T-周期解的若干新结论, 改进推广了有关文献中的已有结果.
设$\{\xi_n, n\geq 1\}$是正的随机变量序列, $\ep \xi_1=\theta>0$, 设$S_n = \sum\limits_{i=1}^n \xi_i, Y_n=n\theta\log (S_n/(n\theta))$. 在该文中, 当$\{\xi_n\}$是独立同分布或强平稳$\varphi$ -混合的正随机变量序列时,作者给出功率和$\{Y_n\}$用Wiener过程的强逼近结果.