数学物理学报

• 论文 • 上一篇    下一篇

线性矩阵方程的埃尔米特广义反汉密尔顿半正定解

张忠志;胡锡炎;张磊   

  1. 东莞理工学院数学系 东莞 523808
  • 收稿日期:2004-11-30 修回日期:2006-01-08 出版日期:2006-08-25 发布日期:2006-08-25
  • 通讯作者: 张忠志
  • 基金资助:
    国家自然科学基金(10571047)资助

On the Hermitian Generalized Anti-Hamiltonian Semi-definite
Solutions of Linear Matrix Equations

Zhang Zhongzhi;Hu Xiyan; Zhang Lei   

  1. Department of Mathematics, Dongguang University of Technology, Dongguan 523808
  • Received:2004-11-30 Revised:2006-01-08 Online:2006-08-25 Published:2006-08-25
  • Contact: Zhang Zhongzhi

摘要: 利用埃尔米特广义反汉密尔顿半正定矩阵的表示定理,作者建立了线性矩阵方程在埃尔米特广义反汉密尔顿半正定矩阵集合中可解的充分必要条件,得到了解的一般表达式.对于逆特征值问题,也得到了可解的充分必要条件.对于任意一个 n 阶复矩阵,得到了相关最佳逼近问题解的表达式.

关键词: 埃尔米特广义反汉密尔顿半正定矩阵, 线性矩阵方程,
逆特征值问题,
最佳逼近

Abstract: By means of the properties of Hermitian generalized anti-Hamiltonian semi-definite matrices, the authors give some necessary and sufficient conditions for the solvability of the linear matrix equation in Hermitian generalized anti-Hamiltonian semi-definite matrix set, and obtain a general expression of the solution for a solvable case. The authors also
give some necessary and sufficient conditions of the solvability for inverse enginvalume problem of Hermitian generalized anti-Hamiltonian semi-definite matrices. For any n× n complex matrix, the authors derive the representation of its unique optimal approximation.

Key words: Hermitian generalized anti-Hamiltonian semi-definite matrices, Linear matrix equations, Inverse enginvalume problems, Optimal approximation

中图分类号: 

  • 15A24