数学物理学报

• 论文 • 上一篇    下一篇

弱斜配对双代数和弱相关Long双代数

张良云   

  1. 南京农业大学数学系 南京 210095; 南京大学数学系 南京 210008
  • 收稿日期:2004-12-30 修回日期:2006-03-10 出版日期:2006-08-25 发布日期:2006-08-25
  • 通讯作者: 张良云
  • 基金资助:
    国家自然科学基金(10571153)、中国科学博士后基金(2005037713)江苏省高等学校自然科学

Weak Skew Paired Bialgebras and Weak Relative Long Bialgebras

Zhang Liangyun   

  1. College of Science, Nanjing Agricultural University, Nanjing 210095
  • Received:2004-12-30 Revised:2006-03-10 Online:2006-08-25 Published:2006-08-25
  • Contact: Zhang Liangyun

摘要:

该文在弱双代数$H$上给出了扭曲积$(H^\sigma,\cdot_\sigma)$成为弱双代数的充分必要条件.设$[B, H, \tau]$是一个弱斜配对, 并且$\tau$可逆,则在某个条件下弱双交叉积$B\bowtie_\tau H$是一个弱双代数. 如果$(B,H, \sigma)$是弱相关Long双代数, 并且$\sigma$可逆,则弱双交叉积$B^{OP}\bowtie_\sigma H$可以被构造. 它的乘法是:
$(x\otimes h)(y\otimes g)=\Sigma\sigma(y_1, h_1)y_2x\otimes h_2g\sigma^{-1}(y_3, h_3),$ 特别地, 如果$(B, H,\sigma)$是相关Long双代数, 则$(B^{OP \bowtie_\sigma H,\beta)$是Long双代数当且仅当对任意$b, d\in B^{OP}; g, \ell\in H$,
$\Sigma\sigma^{-1}(b, g_2\ell)\sigma(d, g_1)=\Sigma\sigma^{-1}(b,
\ell g_1)\sigma(d, g_2),$ 其中$B$为$H$的子Hopf代数,$\beta$定义为$\beta(b\bowtie_\sigma h\otimes c\bowtie_\sigma g)=\varepsilon_H(h)\varepsilon_{B^{OP}}(c)\sigma^{-1}(b, g).$ 对于Sweedler 4维Hopf代数$H$, 作者给出一个例子说明:
此弱双交叉积$(B^{OP}\bowtie_\sigma H, \beta)$不仅是一个Long双代数,
而且是一个非可换和非余可换的8维Hopf代数. 最后, 设$B,H$都是弱双代数, $\sigma: B\otimes H\rightarrow k$是一个线性映射, 作者给出了$(B,\sigma,\leftharpoonup, \Delta_B)$是弱相关右$(H, B)$ -重模代数的充分必要条件.

关键词: 弱Doi双代数, 弱双交叉积, 弱相关Long双代数, 弱相关重模代数

Abstract: This paper gives a sufficient and
necessary condition for given twisted product
$(H^\sigma,\cdot_\sigma)$ to be a weak bialgebra. If $[B, H,
\tau]$ are weak skew paired bialgebras and $\tau$ is invertible,
then, under some condition, the weak
bicrossed product $B\bowtie_\tau H$ is a weak bialgebra. If $(B,
H, \sigma)$ is a weak relative Long bialgebra and $\sigma$
invertible, then the weak bicrossed product $B^{OP}\bowtie_\sigma
H$ can be constructed. Espically, for the Sweedler 4-dimensional
Hopf algebra $H_4$, the author gives an example to show that
$(B^{OP}\bowtie_\sigma H_4, \beta)$ is not only a Long bialgebra
but also a non-commutative and non-cocommutative 8-dimensional
Hopf algebra, where $B$ is a sub-Hopf algebra of $H_4$. If $B$ and
$H$ are weak bialgebras, and $\sigma: B\otimes H\rightarrow k$ is
a linear map, then a sufficient and necessary condition
for $(B,\sigma,\leftharpoonup, \Delta_B)$ to be a weak right
relative $(H, B)$-dimodule algebra is given.

Key words: Weak skew paired bialgebra, Weak bicrossed product, Weak relative long bialgebra, Weak relative dimodule algebra

中图分类号: 

  • 16W30