该文主要解决了如下两个问题
问题I 已知矩阵 M∈ Cn×e, A∈Cn×m, B∈ Cm×m, 求 X∈ HCM,n使得 AHXA=B, 其中 HCM,n={ X∈ Cn×n}|αH(X-XH)=0, for all α∈ C(M) }.
问题II 任意给定矩阵 X* ∈Cn×n, 求 $\hat{X}\in H_E$ 使得 ||\hat{X}-X*||=\min\limits_{X∈ HE}||X-X*||, 这里 HE 为问题I的解集.
利用广义奇异值分解定理,得到了问题I的可解条件及其通解表达式, 获得了问题II的解,并进行了相应的数值计算.