数学物理学报

• 论文 • 上一篇    下一篇

一类带权函数的拟线性椭圆方程

刘祥清; 黄毅生   

  1. 云南师范大学数学科学学院 昆明 650092
  • 收稿日期:2005-02-04 修回日期:2006-12-18 出版日期:2007-04-25 发布日期:2007-04-25
  • 通讯作者: 刘祥清
  • 基金资助:

    国家自然科学基金(10161010)、江苏省高校自然科学基金(05KJB110114)和云南师范大学自然科学研究青年基金(05Z017)资助

A Class of Quasilinear Elliptic Equations with Weights

Liu Xiangqing; Huang Yisheng   

  1. School of Mathematical Sciences, Yunnan Normal University, Kunming 650092
  • Received:2005-02-04 Revised:2006-12-18 Online:2007-04-25 Published:2007-04-25
  • Contact: Liu Xiangqing

摘要: 该文利用变分方法讨论了方程 -△p u=λa(x)(u+)p-1-μa(x)(u-)p-1+f(x, u), u∈
W01,p(\Omega)在(λ, μ)\not\in ∑p和(λ, μ) ∈ ∑p 两种情况下的可解性, 其中\Omega是 RN(N≥3)中的有界光滑区域, ∑p为方程 -△p u=α a(x)(u+)p-1-βa(x)(u-)p-1, u∈ W01,p(\Omega)的Fucik谱, 权重函数a(x)∈ Lr(\Omega) (r≥ N/p)$且a(x)>0 a.e.于\Omega, f满足一定的条件.

关键词: p-Laplacian, Fucik谱, 共振, 非共振, 变分方法

Abstract: In this paper, by using the variational methods, the authors consider the solvability of the equation -△p u=λa(x)(u+)p-1-μa(x)(u-)p-1+f(x, u), u∈
W01,p(\Omega) in the cases of (λ, μ)\not\in ∑p and (λ, μ) ∈ ∑p, where \Omega is a bounded domain in RN(N≥3) with smooth boundary $\partial\Omega$, ∑p is the Fucik spectrum of the equation -△p u=α a(x)(u+)p-1-βa(x)(u-)p-1, u∈ W01,p(\Omega), the weight function a(x) ∈ Lr(\Omega)(r≥ N/p) with a(x)> 0 a.e. in \Omega, f satisfies some conditions to be specified.

Key words: p-Laplacian, Fucik spectrum, Resonance, Nonresonance, Variational methods

中图分类号: 

  • 35J25