数学物理学报

• 论文 • 上一篇    

一类矩阵方程的广义Hermite问题

彭向阳; 胡锡炎   

  1. 长沙学院信息与计算科学系 长沙 410003; 湖南大学数学与计量经济学院 长沙 410082
  • 收稿日期:2005-12-30 修回日期:2007-01-15 出版日期:2007-04-25 发布日期:2007-04-25
  • 通讯作者: 彭向阳
  • 基金资助:
    国家自然科学基金(10571047)和博士学科点专项科研基金(20060532014)资助

The Part Hermitian Solutions of Matrix Equation AHXA=B on Subspace

Peng Xiangyang; Hu Xiyan   

  1. Department of Information and Computing-Science of Changsha University, Changsha 410003;
    College of Mathematics and Econometrics, Hunan University, Changsha 410082
  • Received:2005-12-30 Revised:2007-01-15 Online:2007-04-25 Published:2007-04-25
  • Contact: Peng Xiangyang

摘要:

该文主要解决了如下两个问题

问题I 已知矩阵 M∈ Cn×e, A∈Cn×m, B∈ Cm×m, 求 X∈ HCM,n使得 AHXA=B, 其中 HCM,n={ X∈ Cn×n}|αH(X-XH)=0, for all α∈ C(M) }.

问题II 任意给定矩阵 X* ∈Cn×n, 求 $\hat{X}\in H_E$ 使得 ||\hat{X}-X*||=\min\limits_{X∈ HE}||X-X*||, 这里 HE 为问题I的解集.

利用广义奇异值分解定理,得到了问题I的可解条件及其通解表达式, 获得了问题II的解,并进行了相应的数值计算.

关键词: 矩阵方程, 广义Hermite问题, 最佳逼近问题

Abstract:

In this paper, the following two problems are considered:

Problem I Given M∈ Cn×e, A∈Cn×m, B∈ Cm×m, find X∈ HCM,n such that AHXA=B, where HCM,n={ X∈ Cn×n}|αH(X-XH)=0, for all α∈ C(M) }.

Problem II Given X* ∈Cn×n, find $\hat{X}\in H_E$ such that ||\hat{X}-X*||=\min\limits_{X∈ HE}||X-X*||, where HE is the solution set of Problem I.

The necessary and sufficient condition for the solvability and the general form of the solutions Problem I are given. For Problem II, the expression for the solution, a numerical algorithm and a numerical example are illustrated.

Key words: Matrix equation, Part Hermitian solution, Optimal approximation

中图分类号: 

  • 15A24