方正; 马吉溥
Fang Zheng; Ma Jipu
摘要: 设M和N是Cr (r≥1) Banach流形, P\subset N 是N的子流形, f是从M 到N的C1映射. 该文引进映射f在x0∈f-1(P)点 与P广义横截的概念,它是经典的横截概念的推广. 接着讨论了广义横截性和广义正则点的关系,证明:映射f在x0点与P广义横截的充分必要条件为 x0是与f相关的某个映射g 的广义正则点; 当子流形$P$退化成单点集时,若映射 f与P={p}广义横截, 作者证明p是f的广义正则值; 最后 证明了广义横截点的全体O={x∈ f-1(P): f\pitchfork_G^x P} 是开集.
中图分类号: