数学物理学报

• 论文 • 上一篇    下一篇

论广义横截性

方正; 马吉溥   

  1. 江南大学理学院 无锡 214122
  • 收稿日期:2005-10-08 修回日期:2006-12-18 出版日期:2007-04-25 发布日期:2007-04-25
  • 通讯作者: 方正
  • 基金资助:
    国家自然科学基金(10271053)、教育部博士点基金和江南大学博士启动基金资助

On Generalized Transversality

Fang Zheng; Ma Jipu   

  1. School of Science, Southern Yangtze University, Wuxi 214122
  • Received:2005-10-08 Revised:2006-12-18 Online:2007-04-25 Published:2007-04-25
  • Contact: Fang Zheng

摘要: 设M和N是Cr (r≥1) Banach流形, P\subset N 是N的子流形, f是从M 到N的C1映射. 该文引进映射f在x0∈f-1(P)点 与P广义横截的概念,它是经典的横截概念的推广. 接着讨论了广义横截性和广义正则点的关系,证明:映射f在x0点与P广义横截的充分必要条件为 x0是与f相关的某个映射g 的广义正则点; 当子流形$P$退化成单点集时,若映射 f与P={p}广义横截, 作者证明p是f的广义正则值; 最后 证明了广义横截点的全体O={x∈ f-1(P): f\pitchfork_G^x P} 是开集.

关键词: Banach 流形, 广义逆, 广义横截, 广义正则值, 开集

Abstract: In this paper, the authors generalize the classical transversality by using the perturbation theory of generalized inverse of linear bounded operator, get the new concept of generalized transversality. The authors also discuss some basic properties of the generalized transversality and the relations between generalized transversality and generalized regular point.

Key words: Banach manifold, Generalized inverse, Generalized transversality, Generalized regualr value, Open set

中图分类号: 

  • 47H