数学物理学报

• 论文 •    下一篇

套代数上保秩一幂零性的可加映射

崔建莲; 侯晋川   

  1. 清华大学数学科学系 北京 100084
  • 收稿日期:2005-02-08 修回日期:2006-11-30 出版日期:2007-04-25 发布日期:2007-04-25
  • 通讯作者: 崔建莲
  • 基金资助:

    国家自然科学基金(10501029)、清华大学基础研究基金、教育部高等学校博士点教育基金、国家自然科学基金(10471082)和山西省自然科学基金资助

Additive Maps Preserving Rank-1 Nilpotency on Nest Algebras

Cui Jianlian; Hou Jinchuan   

  1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084
  • Received:2005-02-08 Revised:2006-11-30 Online:2007-04-25 Published:2007-04-25
  • Contact: Cui Jianlian

摘要: NM分别是实或复Banach空间X (dimX>5)和Y中的两个套且AlgN和AlgM分别是与套NM相关的套代数.符号AlgFN表示AlgN中所有有限秩算子全体.设Φ: AlgFN AlgFM是可加映射,且值域包含AlgFM中的所有秩一幂零元.如果Φ双边保秩一幂零性,作者证明了存在一个域自同构ττ-线性算子AC使得要么对所有的秩一幂零元x\otimesf AlgFN, Φ(x\otimesf)=AxCf,要么对所有的秩一幂零元x\otimesf AlgFN, Φ(xf)=Af\otimesCx.特别地,当XY是Hilbert空间且Φ是连续映射时,作者得到
这类可加映射Φ的完全刻画.

关键词: 加映射, 秩一幂零算子, 套代数

Abstract: Let N and M be two nests on real or complex Banach spaces X and Y, respectively, and Φ be an additive map between ideals AlgFN and AlgFM of finite rank operators in nest algebras AlgN and AlgM, of which the range contains all
rank-1 nilpotent operators in AlgM. The authors show that if Φ is rank-1 nilpotency preserving in both directions, then Φ has the form either Φ(xf)=AxCf for every rank-1 nilpotent operator xAlgFN or Φ(xf)=AfCx for every rank-1 nilpotent operator xfAlgFN,
where A and C are certain τ-linear operators with an automorphism τ of the underlying field. And the authors obtain particularly a characterization of such Φ if it is continuous, X and Y are Hilbert spaces with dimX≥ 6.

Key words: Additive map, Rank one nilpotent operator, Nest algebra

中图分类号: 

  • 47B49