数学物理学报

• 论文 • 上一篇    下一篇

Boltzmann方程的永久型解

魏金波; 张显文   

  1. 华中科技大学数学系 武汉 430074
  • 收稿日期:2004-09-20 修回日期:2005-07-07 出版日期:2007-04-25 发布日期:2007-04-25
  • 通讯作者: 魏金波
  • 基金资助:
    国家自然科学基金(10571066)及华中科技大学科学研究基金资助

Eternal Solutions of the Boltzmann Equation

Wei Jinbo; Zhang Xianwen   

  1. Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2004-09-20 Revised:2005-07-07 Online:2007-04-25 Published:2007-04-25
  • Contact: Wei Jinbo

摘要: 该文讨论如下空间非均匀的Boltzmann方程
\frac{\partial f}{\partial t} + \xi\cdot \nabla_{x}f(t,x,\xi) = Q(f, f).
在角截断的硬位势情况下, 对初值接近行波Maxwell分布时,作者利用一种新的迭代方法, 证明了该方程存在一个非负的永久型解. 因此在空间区域无界的情形下,该文对Villani的猜测给出了否定的回答[12, 13].

关键词: Boltzmann方程, Kaniel-Shinbrot迭代, 永久型解

Abstract: In this paper, the authors discuss the following spatially inhomogeneous Boltzmann equation
\frac{\partial f}{\partial t} + \xi\cdot \nabla_{x}f(t, x, \xi) = Q(f, f).
By means of a new iteration method, the existence of a positive eternal solution with initial data close to a travelling Maxwellian is proved in the case of hard potentials with angular cut-off. Hence, the authors give a negative answer to the conjecture of Villani [12, 13] in the case of unbounded space domain.

Key words: Boltzmann equation, Kaniel-Shinbrot iteration, Eternal solution

中图分类号: 

  • 82C40