This paper studies the attraction-repulsion chemotaxis system with logistic source ut=Δu-▽·(u▽v)+μ1u(1-u), 0=Δv+w-v, wt=Δw+▽·(w▽z)+μ2w(1-w), 0=Δz-z+u, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, and μ1,μ2>0. It is proved that for any nonegative initial data u0(x),w0(x)∈C(Ω), the solution (u(·,t),v(·,t),w(·,t),z(·,t)) is globally bounded. Furthermore, if μ1,μ2>(1)/(16), then (u(·,t),v(·,t),w(·,t),z(·,t)) converges asymptotically to the constant equilibrium (1,1,1,1) in the L∞-norm as t→∞.