该文研究了下列带加性噪声的非局部扩散方程的解的渐近行为
其中 $\lambda$为一正数,$g\in L^2({\Bbb R}^n)$,$h\in H^2({\Bbb R}^n)\cap W^{2,p}({\Bbb R}^n)$ 对 $p\geq 2$,$f$ 为满足某增长条件的非线性函数,$w$ 是双边实值Wiener过程.
非局部反应扩散方程(1.1)常出现在流体力学,固体力学和热传导理论中[1-3]. 在确定性情形 ($h=0$),方程 (1.1)的解的适定性和吸引子的存在性已经有许多研究[4-10]. 然而,据作者所知,即使是有界情形,对随机非局部反应扩散方程的吸引子的研究都很少. 该文将研究这类问题.
拉回意义的随机吸引子概念首先由Crauel,Flandoli等引入,参见文献[11-14],随后,随机吸引子得到蓬勃发展,许多学者相继研究了各类方程吸引子存在性问题,参见文献[16-27]. 尤其,Bates等[15]首先应用尾估计的方法克服了无界区域Sobolev 嵌入不紧的困难而建立了定义在无界区域上的随机反应扩散方程产生的随机动力系统的拉回渐近紧性并获得了随机吸引子存在的充分条件. 由于方程(1.1)含有 $-\Delta_t$项,这使得其和通常的反应扩散方程有本质区别. 例如: 通常的反应扩散方程有某种正则性,即虽然初值属于弱拓扑空间,但方程的解属于更强的拓扑空间. 然则,方程(1.1)没有正则性. 这给我们建立非局部扩散方程随机吸引子存在性增加了难度. 为了克服无界区域Sobolev嵌入不紧和没有正则性的问题,该文运用尾估计和分解相结合的方法证明方程解的渐近紧性.
该部分将证明下列定义在${\Bbb R}^n$上的带加性白噪声的非局部扩散方程生成连续随机动力系统
其中 $\lambda$为一正数,$g\in L^2({\Bbb R}^n)$,$h\in H^2({\Bbb R}^n)\cap W^{2,p}({\Bbb R}^n)$ 对 $p\geq 2$,$w$ 是双边实值Wiener过程,$f$ 为满足下列条件的非线性函数
其中$\alpha _1$ 和 $\alpha _2$为正常数,当$n=1,2$时,$2\leq p<\infty$; 当$n\geq3$时,$2\leq p< \frac{2n}{n-2}$; $\psi _1\in L^1({\Bbb R}^n)$; $\psi _2\in L^2({\Bbb R}^n)$.
下面,考虑概率空间 $(\Omega ,{\cal F},P)$,其中
${\cal F}$ 为由$\Omega $诱导的紧开拓扑 Borel $\sigma$ -代数,$P$ 为$(\Omega ,{\cal F})$上的相应的 Wiener 测度. 定义时间转移为
那么 $(\Omega ,{\cal F},P,(\theta_t)_{t\in {\Bbb R}})$为一度量动力系统.
接下来,证明随机方程(2.1)生成连续随机动力系统. 为此,先将带白噪声的随机方程转化为带随机参数的方程.
考虑一维Ornstein-Uhlenbeck方程
易知方程(2.4)的解为
由文献[28]可知,存在$\theta_{t}$ -不变集 $\widetilde \Omega \subseteq \Omega $,关于$P$ 保测,对任意$\omega\in \widetilde \Omega $,$| y(\theta_t\omega) |$ 关于$t$连续,并且随机变量$| y(\omega) |$是缓增的. 设${\cal F}_1$ 和 $P_1$ 为 $\mathcal F$ 和 $P$ 在 $\widetilde \Omega $ 上的限制,我们将定义问题(2.1)在 $(\widetilde\Omega ,{\cal F}_1,P_1,(\theta_{t})_{t\in R})$ 上的连续随机动力系统. 为方便起见,从今以后,我们仍然将$(\widetilde \Omega ,{\cal F}_1,P_1)$写成 $( \Omega ,{\cal F},P)$. 因此,综上所述,存在一缓增函数$r(\omega) > 0$,以致对每个$\omega\in \Omega $,有
设$z ( {\theta _t \omega }) = (I-\Delta)^{-1}hy(\theta_t\omega),$ 由方程(2.4) 可得
令$v(t) = u(t)- z(\theta_t\omega)$,其中$u$是方程 (2.1)的解. 那么$v$满足
由Galerkin方法可知如果$f$满足条件(2.2)-(2.3),那么对每一个$\omega\in \Omega $和对任意$v_0\in H^1({\Bbb R}^n)$,方程(2.6) 有唯一解$v( { \cdot ,\omega ,v_0 } ) \in C( {\left[{0,\infty} \right),H^1({\Bbb R}^n) } ) \cap L^{p} ( {( {0,T} ),L^{p} ({\Bbb R}^n) } ) $,对任意$T>0$,其中$v( {0,\omega ,v_0 } ) = v_0$. 进一步,对任意$t \geq 0$,$v(t,\omega,v_0)$关于 $v_0\in H^1({\Bbb R}^n)$在$H^1({\Bbb R}^n)$上是连续的. 令 $u( {t,\omega ,u_0 } ) = v( {t,\omega ,u_0 - z(\omega )} ) + z(\theta_t\omega ). $ 则$u$是方程(2.1)的解. 定义一映射$\phi : {\Bbb R}^+ \times \Omega \times H^1({\Bbb R}^n) \to H^1({\Bbb R}^n) $为
由文献[15]可知,$\phi$为连续随机动力系统.
定义
下列,都假设${\cal D}$ 为关于$(\Omega ,{\cal F},P,(\theta_t)_{t\in {\Bbb R}})$的$H^1({\Bbb R}^n )$中的缓增集. 该部分主要是给出问题(2.6)解的一系列估计.
引理3.1 假设条件(2.2)-(2.3)成立. 设 $\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 和 $v_0(\omega)\in B(\omega)$. 那么对每一个 $\omega \in \Omega $,存在$T=T(B,\omega)>0$,以致方程(2.6)的解$v(t,\omega,v_0({\omega}))$满足对任意 $t\geq T$,
其中$M$是一依赖于$\lambda$ 的正常数,但是不依赖于$\omega$ 和 $B$,$r(\omega)$是一缓增函数.
证 方程(2.6) 关于 $v$ 在$L^2({\Bbb R}^n)$中取内积,可得
对于非线性项,由条件(2.2)-(2.3) 可得
另一方面,不等式 (3.2)的右边的最后两项有如下估计
那么,由 (3.2)-(3.4)式得
注意 $(I-\Delta)^{-1}h\in H^2({\Bbb R}^n)\cap W^{2,p}({\Bbb R}^n)$. 故(3.5)式的右边可以如下估计
由 (2.5)式和 $r(\omega)$的缓增性,可知对每一个 $\omega\in \Omega $,
由 (3.5)-(3.6) 式和 (2.8)式可知,对任意 $t\geq 0$,
对上式两边先乘于 ${\rm e}^{\sigma t}$,再在 $(0,t)$上积分可知,对任意 $t\geq0$,
用$\theta_{-t}\omega$替换$\omega$,由(3.7)和 (3.9)式可得,对任意 $t\geq0$,
由假设,$\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 是缓增的. 因此,如果 $ v_0 ( {\theta _{ - t} \omega } ) \in B( {\theta _{ - t} \omega } ) $,那么存在$T=T(B,\omega)>0$,对任意$t\geq T$,
上式结合(3.10) 式可得结论.
引理3.2 假设条件(2.2)-(2.3)成立. 设 $\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 和 $v_0(\omega)\in B(\omega)$. 那么对每一个 $\omega \in \Omega $ 和每一个 $T_1>0$,以致(2.6)式的解$v(t,\omega,v_0({\omega}))$满足对任意 $t\geq T_1$,
其中 $r(\omega)$是(2.5)式中的缓增函数,$M$是一依赖于$\lambda$ 的正常数,但是不依赖于$\omega$,$B$和$T_1$.
证 该结论直接由 (3.10)式和下式可得,对所有的 $T_1>0$,有
证毕.
引理3.3 假设条件(2.2)-(2.3)成立. 设 $\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 和 $v_0(\omega)\in B(\omega)$. 那么对每一个 $\omega \in \Omega $,存在$T=T(B,\omega)>0$,以致方程(2.1)的解$u(t,\omega,u_0({\omega}))$ 和$ v(t,\omega,v_0({\omega}))$,其中$u_0(\omega)=v_0(\omega)+z(\omega)$,满足对任意$t\geq T$ 和 $s\in [-t,0]$,有
其中$r(\omega)$是(2.5)式中的缓增函数,$M$是一依赖于$\lambda$ 的正常数,但是不依赖于$\omega$ 和 $B$.
证 先在 (3.8)式两边同乘 ${\rm e}^{\frac{\sigma}{p-1} t}$,然后在 $(0,t+s)$上积分,其中 $s\in [-t,0]$,那么对任意 $t\geq 0,$ 有
用$\theta_{-t}\omega$替换$\omega$,由上式,(2.5)式以及 $r(\omega)$的缓增性,可得
由假设,$\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 是缓增的. 因此,如果 $ v_0 ( {\theta _{ - t} \omega } ) \in B( {\theta _{ - t} \omega } ) $,那么存在 $T=T(B,\omega)>0$,以致对任意 $t\geq T$,
那么,
注意到 $u( {t,\omega ,u_0 } ) = v( {t,\omega ,u_0 - z(\omega )} ) + z(\theta_t\omega )$. 故由 (3.14) 式和 $|y(\omega)|$ 的缓增性可得,对任意 $t\geq T$,
故得证.
引理3.4 假设条件(2.2)-(2.3)成立. 设 $\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 和 $v_0(\omega)\in B(\omega)$. 那么方程(2.1)的解$u(t,\omega,u_0({\omega}))$ 和$ v(t,\omega,v_0({\omega}))$,其中$u_0(\omega)=v_0(\omega)+z(\omega)$,满足对任意$t\geq0$和每一个 $\omega \in \Omega $,有
证 对方程 (2.6) 和 $v_t$ 在 $L^2({\Bbb R}^n)$上取内积,可得
由(2.3) 式可得
由 (3.16)和 (3.17) 式可知
引理3.5 假设条件(2.2)-(2.3)成立. 设 $\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 和 $v_0(\omega)\in B(\omega)$. 那么对任意$\varepsilon >0$ 和 $\omega\in \Omega $,存在$T=T(B,\omega,\varepsilon )\geq1$ 和 $K=K(\omega,\varepsilon )\geq1$ 以致对任意 $t\geq T$,方程 (2.6)的解$v$满足
证 设 $\rho$为${\Bbb R}^+$上的光滑函数,并且满足对任意$s\in {\Bbb R}^+$,$0 \leq \rho(s) \leq 1$,特别的,当$0\leq s\leq1$时 $\rho(s)=0$,当$ s\leq 2$时$\rho(s)=1$. 显然$\rho'$在${\Bbb R}^+$上有界. 在方程(2.6)两边同乘$\rho ( {\frac{{\left| x \right|^2 }}{{k^2 }}} )v $,然后积分,可得
下面估计 (3.18) 式中的项. 首先有
(3.19)式的右边第二项
对非线性项,可得
由(2.2),(3.21)式右边第一项,有下列估计
由 (2.3),(3.21)式右边第二项,有下列估计
故由(3.21)-(3.23) 式可知
另外,(3.18)式的右边最后一项满足
由 (3.18)-(3.20),(3.24) 和(3.25)式可得
该式结合(2.8) 式,可得
由引理3.1可知,存在 $T_1 = T_1(B,\omega ) > 0$ 以致对任意 $t \geq T_1$,有
对上式两边同乘${\rm e}^{\sigma t}$,然后在 $(T_1,t)$上积分 ,可得,当 $t\geq T_1$时,有
在(3.27)式中用$\theta_{-t}\omega$代替$\omega$ 可得,当 $t\geq T_1$时,有
下面,估计 (3.28)式中的项. 首先在 (3.9)式中用$T_1$代替 $t$,然后用$\theta_{-t}\omega$代替$\omega$,(3.28)式右边第一项有如下估计
其中,我们用到了 (3.7)式. 由 (3.29)式可知,给定 $\varepsilon >0$,存在 $T_2 = (B,\omega,\varepsilon ) > T_1$,以致对任意 $t \geq T_2$,
由引理 3.2,存在 $T_3 = T_3(B,\omega) > T_1$,以致 (3.28)式右边第二项满足当 $t \geq T_3$时,
因此,存在 $R_1 = R_1(\omega,\varepsilon ) > 0$,对致对任意 $t \geq T_3$和 $k\geq R_1$,有
注意到 $\psi_1 \in L^1({\Bbb R}^n)$ 和$\psi_2,g\in L^2({\Bbb R}^n)$. 因此,存在 $R_2 = R_2(\varepsilon )$ ,使得当$k\geq R_2$时,有
(3.28)式右边第三项有如下估计
由于 $(I-\Delta)^{-1}h \in H^2({\Bbb R}^n)\cap W^{2,p}({\Bbb R}^n)$,故存在 $R_3 =R_3(\omega,\varepsilon ) > 0$,当 $k\geq R_3$时,有
注意到$z(\theta_t\omega ) = ( {I - \Delta } )^{ - 1} hy(\theta_t\omega )$. 由(3.33)式,(2.5)式和$r(\omega)$的缓增性,(3.28)式右边第四项满足
设 $T_4 =T_4(B,\omega,\varepsilon ) = \max\{T_1,T_2,T_3 \}$ 和 $ R_4= R_4(\omega,\varepsilon ) = \max\{R_1,R_2,R_3\}$. 那么由 (3.28),(3.30),(3.31),(3.32)和 (3.34)式可知,当 $t \geq T_4$ 和 $k \geq R_4$时,有
由上式可知,当 $t \geq T_4$ 和 $k \geq R_4$时,
现在估计方程(2.6)的解在有界区域的的行为. 为此,记$\psi( s ) = 1-\rho( s )$,其中$\rho( s )$是引理3.5 中给定的函数$\rho( s )$. 设$k\geq1$及
注意到$\tilde v\in H^1_0(Q_{2k})$,其中$Q_{2k}=\{x\in {\Bbb R}^n:|x|<2k\}$. 在方程(2.6)两边同乘$ \psi ( {\frac{{\left| x \right|^2 }}{{k^2 }}} ) $,可得
考虑下列特征值问题
则其对应的特征值和对应的特征函数为 $\left\{ {\lambda _j } \right\}_{j = 1}^\infty$和 $\left\{ {e_j } \right\}_{j = 1}^\infty$,其中 $\left\{ {e_j } \right\}_{j = 1}^\infty$为 $L^2 ( {Q_{2k} } )$中的一组正交基. 给定$n$,设$X_n = \mbox{span}\left\{ {e_1 ,e_2 ,\cdots e_n } \right\} $及$P_n :L^2 ( {Q_{2k} } ) \to X_n$是投影算子.
引理3.6 假设条件(2.2)-(2.3)成立. 设 $\{B(\omega)\}_{\omega\in \Omega } \in {\cal D}$ 和 $v_0(\omega)\in B(\omega)$. 那么对任意$\varepsilon >0$ 和 $\omega\in \Omega $,存在$T=T(B,\omega,\varepsilon )\geq1$,$K=K(\omega,\varepsilon )\geq1$ 和$N=N(\omega,\varepsilon )>0$以致方程 (2.6)的解$v(t,\omega,v_0({\omega}))$当 $t\geq T$,$k\geq K$ 和 $n\geq N$时,有
证 设 $\tilde v_{n,1} = P_n \tilde v $ 和 $\tilde v_{n,2} =( I-P_n) \tilde v $. 对$\tilde v_{n,2}$在 $L^2 ( {Q_{2k} } )$上取内积,可得
注意当$s \notin ( 1 ,2 ) $时,$\psi' ( s ) = 0$. 故有
和
由 (3.38)-(3.39)式,(3.37)式的右边项有如下估计
设 $\theta = \frac{{n ( {p - 2} )}}{{2p}}$. 由于若 $n\geq 3$,则$2\leq p<\frac{2n}{n-2}$,可知 $0\leq\theta<1$. 故由 (2.3)式和内插不等式,可知 (3.37)式的右边第一项满足
由(3.40)-(3.44)式和 (3.37)式,有
注意$\psi_2,g\in L^2({\Bbb R}^n)$和 $\theta<1$. 由引理3.4,(2.8)和 (3.45)式,对任意 $\varepsilon >0$,存在 $N = N(\varepsilon )$ 和 $K= K(\varepsilon )$,以致对任意 $n \geq N$ 和$k\geq K$,有
对上式两边同乘 ${\rm e}^{2\sigma t}$,然后$(0,t)$上积分,可得,对任意$t\geq 0,$ 有
在(3.47)式中用$\theta_{-t}\omega$代替 $\omega$,由引理3.3可得,当$t\geq 0$时,有
由于 $v_ 0(\theta_{-t}\omega) \in B (\theta_{-t}\omega)$,(3.48)式的右边第一项当$t\rightarrow \infty$时渐近于零. 那么存在 $T = T( B ,\omega,\varepsilon ) > 0$,以致对所有 $t\geq T_1$,第一项小于 $\varepsilon $. 故由(3.48)式,当$n \geq N ,k \geq K$ 和 $t\geq T$时,有
下面,证明主要结果. 注意到 $u( {t,\omega ,u_0 } ) = v( {t,\omega ,u_0 - z(\omega )} ) + z(\theta_t\omega ). $ 故由 (3.10)式可知,对所有$t\geq0$,有
因此,如果 $ u_0 ( {\theta _{ - t} \omega } ) \in B( {\theta _{ - t} \omega } )\in {\cal D} $,则存在 $T=T(B,\omega)>0$,当 $t\geq T$时,有
上式结合 (4.1) 式可得,当 $t\geq T$时,有
给定 $\omega\in \Omega $,记
那么 $\{K(\omega )\}_{\omega\in \Omega } \in {\cal D}$. 更进一步,由(4.3) 式可得 $\{K(\omega )\}_{\omega\in \Omega }$ 是$\phi$在${\cal D}$中的一吸收集.
下面证明$\phi$在$H^1({\Bbb R}^n)$中是拉回渐近紧的.
引理4.1 假设条件 (2.2)-(2.3) 成立. 那么随机动力系统$\phi$是在$H^1({\Bbb R}^n)$中$\mathcal D$ -拉回拉回渐近紧的,即当每一个$\omega\in \Omega $,系列 $\left\{ {\phi ( {t_m ,\theta _{ - t_m } \omega ,u_{0,m} ( {\theta _{ - t_m } \omega } )} )} \right\}$ 在$H^1({\Bbb R}^n)$中存在收敛子列,其中$t_m \rightarrow \infty$,$ B = \left\{ {B(\omega )} \right\}_{\omega \in \Omega } \in \mathcal D $ 和 $u_{0,m} ( {\theta _{ - t_m } \omega } ) \in B( {\theta _{ - t_m } \omega } ).$
证 由于 $t_m\rightarrow 0$,由引理 3.1可知,对每一个$\omega\in \Omega $,存在 $M_1=M_1(B,\omega)$,当 $m\geq M_1$时,有
给定 $\varepsilon >0$,由引理 3.5,存在 $M_2=M_2(B,\omega,\varepsilon )$ 和 $k_0=k_0(\omega,\varepsilon )$,当 $m\geq M_2$时,有
设 $\tilde v$和(3.35)式中定义的一样. 那么由引理3.6可知,存在 $k_1=k_1(\omega,\varepsilon )\geq k_0$,$M_3=M_3(B,\omega,\varepsilon )\geq \max\{M_1,M_2\}$ 和 $N=N(\omega,\varepsilon )$,当$M\geq M_3$时,有
由(4.4)式可知 $\{P_N \tilde v( {t_m ,\theta _{ - t_m } \omega ,v_0 ( {\theta _{ - t_m } \omega } )} )\} $在有限维空间$P_N H^1 ( {Q_{2k_1 } } )$是有界的,故 \linebreak $ P_N H^1 ( {Q_{2k_1 } } )$是列紧的. 结合 (4.6)式可知 $\{\tilde v( {t_m ,\theta _{ - t_m } \omega ,v_0 ( {\theta _{ - t_m } \omega } )} )\} $ 在 $H^1 ( {Q_{2k_1 } } )$中是列紧的. 由于对$\left| x \right| \le k_1$有 $\tilde v( {t_m ,\theta _{ - t_m} \omega ,v_0 ( {\theta _{ - t_m } \omega } )} ) = v( {t_m ,\theta _{ - t_m } \omega ,v_0 ( {\theta _{ - t_m } \omega } )} ),$故
上式结合 (4.5)式可知 $\{ v( {t_m ,\theta _{ - t_m } \omega ,v_0 ( {\theta _{ - t_m} \omega } )} )\}$ 在 $H^1 ( {\Bbb R}^n )$ 中是列紧的. 由 (2.7)式可知 $\phi$ 是在$H^1({\Bbb R}^n)$中 $\mathcal D$ -拉回渐近紧的. 故得证.
定理4.1 假设条件 (2.2)-(2.3) 成立,则 $\phi$在空间$H^1({\Bbb R}^n)$中存在唯一 ${\mathcal D}$ -随机吸引子 $\mathcal A$.
证 由(4.3)式可知 $\phi$有一闭吸收集. 引理4.1证明了 $\phi$ 是在$H^1({\Bbb R}^n)$中 $\mathcal D$ -拉回渐近紧的. 因此由文献[15,命题2.7]可得$\phi$ 在空间$H^1({\Bbb R}^n)$中存在唯一 ${\mathcal D}$ -随机吸引子 $\mathcal A$.