Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (1): 146-157.
Previous Articles Next Articles
Ma Lingwei, Fang Zhongbo
Received:
2016-04-24
Revised:
2016-10-20
Online:
2017-02-26
Published:
2017-02-26
Supported by:
Supported by the Natural Science Foundation of Shandong Province (ZR2012AM018) and the Fundamental Research Funds for the Central Universities (201362032)
CLC Number:
Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions[J].Acta mathematica scientia,Series A, 2017, 37(1): 146-157.
[1] Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. New York:Springer-Verlag, 1989 |
[1] | Zhao Yuanzhang, Ma Xiangru. Blow-Up Analysis for a Nonlocal Reaction-Diffusion Equation with Variant Diffusion Coefficient [J]. Acta mathematica scientia,Series A, 2018, 38(4): 750-769. |
[2] | Niu Yi, Peng Xiuyan, Wang Xingchang, Yu Tao, Yang Yanbing. Quenching Solution for Nonlinear Heat Equation with Opposite Absorption Sources and Its Simulation [J]. Acta mathematica scientia,Series A, 2018, 38(1): 168-173. |
[3] | Yang Wenbin, Wu Jianhua. Some Dynamics in Spatial Homogeneous and Inhomogeneous Activator-Inhibitor Model [J]. Acta mathematica scientia,Series A, 2017, 37(2): 390-400. |
[4] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[5] | Li Kun, Zheng Zhaowen. Spectral Properties for Sturm-Liouville Equations with Transmission Conditions [J]. Acta mathematica scientia,Series A, 2015, 35(5): 910-926. |
[6] | Wang Gang, Tang Yanbin. Exponential Attractors for Reaction-Diffusion Equations in H2(Ω) and L2P-2(Ω) [J]. Acta mathematica scientia,Series A, 2015, 35(4): 641-650. |
[7] | Liu Jiang, Zhu Lintao, Lin Zhigui. An SEI Epidemic Diffusive Model and Its Moving Front [J]. Acta mathematica scientia,Series A, 2015, 35(3): 604-617. |
[8] | Ling Zhengqiu, Qin Siqian. Coupled Semilinear Parabolic System with Nonlinear Nonlocal Boundary Condition [J]. Acta mathematica scientia,Series A, 2015, 35(2): 234-244. |
[9] | LIU Qiong. A Integral Inequality with Multi-parameters and the Kernel of Hyperbolic Cotangent Function [J]. Acta mathematica scientia,Series A, 2014, 34(4): 851-858. |
[10] | LIU Qiong, LONG Shun-Chao. A Generalization of Hilbert-type Integral Inequality [J]. Acta mathematica scientia,Series A, 2014, 34(1): 179-185. |
[11] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[12] | XIN Dong-Mei, YANG Bi-Cheng. On a New Extension of a Hilbert-type Integral Inequality [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1648-1653. |
[13] | WANG Chang-You, WANG Shu, LI Lin-Rui. Periodic Solution and Almost Periodic Solution of a Nonmonotone Reaction-diffusion System with Time Delay [J]. Acta mathematica scientia,Series A, 2010, 30(2): 517-524. |
[14] | Xie Qiangjun; Zhang Guangxin; Zhou Zekui. The Existence of Positive Periodic Solutions for a Kind of Periodic Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2009, 29(2): 465-474. |
[15] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|