数学物理学报  2017, Vol. 37 Issue (1): 18-25   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张宇芳
徐庆华
单位圆盘上全纯映照模的精细Schwarz引理
张宇芳, 徐庆华     
浙江科技学院理学院 杭州 310023
摘要:记 ${\Bbb D}\subset {\Bbb C}$ 为单位圆盘, ${\Bbb B}^p=\{z\in {\Bbb C}^{n}: \sum\limits^{n}_{i=1}|z_{i}|^{p}<1\},1<p<+\infty.$ 该文证明了若 $f\in H_m({\Bbb D},{\Bbb B}^p)$ ,则 $|\nabla||f||(z)|\leq \frac{m|z|^{m-1}}{1-|z|^{2m}}(1-||f(z)||^2),\ z\in {\Bbb D}.$ 同时,当 $p$ 为偶数时,该文也讨论了相应的极值问题,所得结论推广了一些相关结果.
关键词全纯映照     m阶零点     Schwarz引理    
Refinement of Schwarz Lemma for the Modulus of Holomorphic Mappings on the Unit Disk
Zhang Yufang, Xu Qinghua     
School of Science, Zhejiang University of Science and Technology, Hangzhou 310023
Abstract: Let ${\Bbb D}$ be the unit disk in ${\Bbb C}$ , ${\Bbb B}^p=\{z\in {\Bbb C}^{n}: \sum\limits^{n}_{i=1}|z_{i}|^{p}<1\},1<p<+\infty.$ In this note,it is proved that if $f\in H_m({\Bbb D},{\Bbb B}^p)$ ,then $|\nabla||f||(z)|\leq \frac{m|z|^{m-1}}{1-|z|^{2m}}(1-||f(z)||^2),\ z\in {\Bbb D}.$ The extremal problem is also discussed when $p$ is an even number. This result extends some related results on schwarz lemma.
Key words: Holomorphic mappings     Zero of order m     Schwarz lemma    
1 引言

${\Bbb D}$ 表示复平面 ${\Bbb C}$ 的开单位圆盘,${\Bbb C}^n$ 表示 $n$ 维复欧氏空间,用 $\Omega_1$$\Omega_2$ 分别表示 ${\Bbb C}^n$${\Bbb C}^q$ 中的域,将 $\Omega_1$ 映到 $\Omega_2$ 的全纯映照的全体记为 $H(\Omega_1,\Omega_2)$. 另外用 ${\Bbb N}$ 表示正整数集,${\Bbb R}$ 表示实数集.

熟知,若 $f$$\Omega_1$ 上全纯,$z\in \Omega_1$,则有

$f(w)=\sum_{l=0}^\infty\frac{1}{l!}D^lf(z)((w-z)^l) $

在点 $z\in \Omega_1$ 的领域中的点 $w$ 上成立,其中 $D^lf(z)$ 表示 $f$ 在点 $z$$l$ 阶 Fréchet 导数.

定义1.1 [1]$\Omega$${\Bbb C}^n$ 中包含原点的域,$f\in H(\Omega,{\Bbb C}^q)$. 若 $f(0)=0,\cdots,D^{m-1}f(0)=0$,但 $D^mf(0)\neq 0$,其中 $m\in {\Bbb N}$,则称 $z=0$$f(z)$$m$ 阶零点.

$f \in H(\Omega_1,\Omega_2)$,且在 $z=0$ 的展开式为

$f(z)=f(0)+\sum\limits_{l=1}^\infty \frac{D^{lm}f(0)(z^{lm})}{(lm)!},$

其族记为 $H_m(\Omega_1,\Omega_2)$. 当 $\Omega_1= {\Bbb D}$ 时,上述的幂级数展开式也可写为

$f(z)=f(0)+\sum\limits_{l=1}^\infty \frac{f^{(lm)}(0)}{(lm)!}z^{lm}.$

显然,若 $f\in H_m(\Omega_1,\Omega_2)$,则 $z=0$$f(z)-f(0)$$m$ 阶零点,但反之不然.

$p>1$,在${\Bbb C}^n$ 中引入范数 $\|z\|=(\sum\limits^{n}_{i=1}|z_{i}|^{p})^{\frac{1}{p}}$,记 ${\Bbb B}^p=\{z\in {\Bbb C}^{n}:\sum\limits^{n}_{i=1}|z_{i}|^{p}<1\}.$

在几何函数论中,对全纯函数导数模的估计一直是人们感兴趣的研究课题,见文献[2-4]. 如下的结果是单复变经典的 Schwarz-Pick 引理.

引理A$\varphi\in H({\Bbb D},{\Bbb D})$,则

$|\varphi'(z)|\leq\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}},\ \ z\in {\Bbb D}.$ (1.1)

且 (1.1)式在 $z$ 点取等号当且仅当

$\varphi(z)={\rm e}^{{\rm i}\theta}\frac{z+a}{1+\bar{a}z},\ \theta \in {\Bbb R},\ a,\ z \in {\Bbb D}.$

随后,人们将 (1.1) 式推广到任意阶导数的情形,见文献[5-6]; 近年来,人们也将 (1.1) 式推广到多复变数空间,见文献[7-11].

在文献[12] 中,Liu 和 Dai 证明了如下的定理.

引理B$f\in H_{}({\Bbb D},{\Bbb B}^p)$,$1<p<+\infty$,则

$|\nabla\|f\|(z)|\leq\frac{1-\|f(z)\|^{2}}{1-|z|^{2}},\ \ z\in{\Bbb D}.$ (1.2)

本文的目的是把定理 B 推广到映照族 $ H_m({\Bbb D},{\Bbb B}^p) (1<p<+\infty)$,并考虑 (1.2)式在等号成立时的极值映照. 为此,先给出 Liu 和 Dai[12] 关于 $|\nabla\|f\|(z)|$ 的定义及相关运算.

$f\in H({\Bbb D},{\Bbb B}^p)$,对 $\forall z \in {\Bbb D}$,记 $F(z)=\|f(z)\|$. 现定义

$ |\nabla\|f\|(z)|=\sup\limits_{\beta\in{\Bbb C},|\beta|=1}\left(\lim\limits_{t\in{\Bbb R},t\rightarrow 0^{+}}\frac{||f||(z+t\beta)-\|f\|(z)}{t}\right),\ \ z\in {\Bbb D},$

其中 $f=(f_1,f_2,\cdots,f_n)$,$\|f(z)\|=(\sum\limits^{n}_{i=1}|f_{i}(z)|^{p})^{\frac{1}{p}}$.

于是,

$ |\nabla F(z)|=\sup\limits_{\beta\in{\Bbb C},|\beta|=1}\left(\lim\limits_{t\in{\Bbb R},t\rightarrow 0^{+}}\frac{F(z+t\beta)-F(z)}{t}\right),\ \ z\in {\Bbb D}. $

$F(z)\neq 0$,则 $F$ 在点 $z$ 是可微的,因此可得

$ |\nabla F(z)|=2\left|\frac{\partial F}{\partial z}\right|,$

其中

$ \frac{\partial F}{\partial z}=\frac{1}{2}\left(\frac{\partial F}{\partial x}- {\rm i} \frac{\partial F}{\partial y}\right),\ \ z=x+{\rm i}y,\ x,\ y \in {\Bbb R}. $

并且有

$\nabla \|f\|(z)=2\frac{\partial \|f(z)\|}{\partial z} =2\frac{\partial (\sum\limits^{n}_{i=1}|f_{i}(z)|^{p})^{\frac{1}{p}}}{\partial z}\\ =\frac{2}{p}\|f(z)\|^{1-p}\frac{\partial (\sum\limits^{n}_{i=1}|f_{i}(z)|^{p})}{\partial z} \\ =\frac{2}{p}\|f(z)\|^{1-p}\sum\limits^{n}_{i=1}\frac{\partial (|f_{i}(z)|^{p})}{\partial z} \\=\frac{2}{p}\|f(z)\|^{1-p}\sum\limits^{n}_{i=1}\frac{pf_{i}^{p-1}(z)f'_{i}(z) \overline{f_{i}^{p}(z)}}{2|f_{i}(z)|^{p}} \\=\|f(z)\|^{1-p}\sum\limits^{n}_{i=1}\frac{f_{i}^{p-1}(z)f'_{i}(z) \overline{f_{i}^{p}(z)}}{|f_{i}(z)|^{p}},\ z\in{\Bbb D}.$

由上式即得

$ |\nabla\|f\|(z)|=\|f(z)\|^{1-p}\left|\sum\limits^{n}_{i=1}\frac{f_{i}^{p-1}(z)f'_{i}(z)\overline{f_{i}^{p}(z)}}{|f_{i}(z)|^{p}}\right|,\ z\in{\Bbb D}. $

$F(z)=0$,由定义得

$ |\nabla F(z)|=\sup\limits_{\beta\in{\Bbb C},|\beta|=1} \left(\lim\limits_{t\in{\Bbb R},t\rightarrow 0^{+}}\frac{F(z+t\beta)}{t}\right) =\sup\limits_{\beta\in{\Bbb C},|\beta|=1}\left(\lim\limits_{t\in{\Bbb R},t\rightarrow 0^{+}}\frac{\|f(z+t\beta)-f(z)\|}{t}\right). $

$ \lim\limits_{t\in{\Bbb R},t\rightarrow 0^{+}}\frac{\|f(z+t\beta)-f(z)\|}{t}=\|Df(z)\cdot \beta\|=\|f'(z)\|,$

其中 $Df(z)$$f$ 在点 $z$ 的 Fréchet 导数.

$|\nabla\|f\|(z)|=\left\{\begin{array}{ll} \|f(z)\|^{1-p}\left|\sum\limits^{n}_{i=1}\frac{f_{i}^{p-1}(z)f'_{i}(z)\overline{f_{i}^{p}(z)}}{|f_{i}(z)|^{p}}\right|,\ \ & f(z)\neq 0,\\ \|f'(z)\|,\ \ & f(z)=0. \end{array}\right.$ (1.3)
2 函数族 $H_m({\Bbb D,{\Bbb D})}$ 的 Schwarz-Pick 引理

引理2.1 [13]$\varphi \in H({\Bbb D},{\Bbb D})$,$\varphi(z)=\sum\limits_{\nu=0}^\infty a_\nu z^\nu,$

$|a_\nu|\leq 1-|a_0|^2,\ \nu\geq 1.$

定理2.1$\varphi \in H_m({\Bbb D},{\Bbb D})$,则

$|\varphi'(z)|\leq \frac{m|z|^{m-1}}{1-|z|^{2m}}(1-|\varphi(z)|^2),\ z\in {\Bbb D},$ (2.1)

该估计式是精确的.

由于 $\varphi \in H_m({\Bbb D},{\Bbb D})$,则

$\varphi(z)=\varphi(0)+\sum\limits_{l=1}^\infty \frac{\varphi^{(lm)}(0)}{(lm)!}z^{lm}.$ (2.2)

由 (2.2)式可得

$ F(z)=\varphi \left(\left(\frac{z+\zeta^m}{1+\bar{\zeta}^mz}\right)^{\frac{1}{m}}\right)=\sum\limits_{v=0}^\infty c_vz^v \in H({\Bbb D},{\Bbb D}) $

$ \varphi(z)=F\left(\frac{z^m-\zeta^m}{1-(\bar{\zeta}z)^m}\right)=\sum\limits_{v=0}^\infty c_v\left(\frac{z^m-\zeta^m}{1-(\bar{\zeta}z)^m}\right)^v. $

经计算得

$ \varphi'(\zeta)=c_1\frac{m\zeta^{m-1}}{1-|\zeta|^{2m}}. $

注意到 $c_0=\varphi(\zeta),$ 由引理 2.1 知

$ |c_1|\leq 1-|c_0|^2=1-|\varphi(\zeta)|^2. $

$ |\varphi'(\zeta)|\leq \frac{m|\zeta|^{m-1}}{1-|\zeta|^{2m}}(1-|\varphi(\zeta)|^2). $

$z$ 替换 $\zeta$,即得 (2.1) 式成立.

下面的例子表明定理 2.1 的估计是精确的.

$ \varphi(z)={\rm e}^{{\rm i}\theta}\frac{z^m+z_0}{1+\bar{z_0}z^m},\ \theta \in {\Bbb R},\ |z_0|<1,\ |z|<1. $

证毕.

注2.1 注意到当 $0\leq x<1,\ m\in {\Bbb N}$ 时,成立着

$ \frac{1-x^{2m}}{1-x^2}=1+x^2+x^4+\cdots+x^{2m-2} \geq m\sqrt[m]{1\cdot x^2\cdot x^4\cdots x^{2m-2}} =mx^{m-1}. $

也即

$ \frac{mx^{m-1}}{1-x^{2m}}\leq \frac{1}{1-x^2},\ \ 0\leq x<1,\ \ m\in {\Bbb N}. $

这表明定理 2.1 推广和改进了经典的 Schwarz-Pick 引理.

3 $H_m({\Bbb D,{\Bbb B}^p)}$ 中映照的模的 Schwarz-Pick 引理

引理3.1 [12]$H({\Bbb D},{\Bbb B}^p),\ 1<p<+\infty $,则

$ |\nabla\|h\|(0)|\leq 1-\|h(0)\|^{2},\ z\in {\Bbb D}. $

定理3.1$f \in H_m({\Bbb D},{\Bbb B}^p)$,则

$|\nabla \|f\|(z)|\leq \frac{m|z|^{m-1}}{1-|z|^{2m}}(1-\|f(z)\|^2),\ \ z\in {\Bbb D}.$ (3.1)

$f\in H_m({\Bbb D},{\Bbb B}^p)$,于是

$ f(z)=f(0)+\sum\limits_{l=1}^\infty \frac{f^{(lm)}(0)}{(lm)!}z^{lm},$

其中$f(0)=(f_1(0),f_2(0),\cdots,f_n(0))$,$f^{(lm)}(0)=(f^{(lm)}_1(0),f^{(lm)}_2(0),\cdots,f^{(lm)}_n(0))$.

$ \sigma_\zeta(z)=\left(\frac{z+\zeta^m}{1+\bar{\zeta}^mz}\right)^{\frac{1}{m}},\ \ z,\ \zeta\in {\Bbb D}. $

因此

$h(z)=f\circ \sigma_\zeta(z)\\ =\left(f_1\left(\frac{z+\zeta^m}{1+\bar{\zeta}^mz}\right)^{\frac{1}{m}},f_2\left(\frac{z+\zeta^m}{1+\bar{\zeta}^mz}\right)^{\frac{1}{m}},\cdots,f_k\left(\frac{z+\zeta^m}{1+\bar{\zeta}^mz}\right)^{\frac{1}{m}}\right)\in H({\Bbb D},{\Bbb B}^p).$ (3.2)

(3.2)式即为

$h\left(\frac{z^m-\zeta^m}{1-(\bar{\zeta}z)^m}\right)=f(z).$ (3.3)

由 (3.3)式可得

$ f(\zeta)=h(0) $

$ |\nabla \|f\|(\zeta)|=\frac{m|\zeta|^{m-1}}{1-|\zeta|^2}|\nabla \|h\|(0)|. $

由引理 3.1 知

$ |\nabla \|h\|(0)|\leq 1-\|h(0)\|^2,$

此即

$ |\nabla \|f\|(\zeta)|\leq \frac{m|\zeta|^{m-1}}{1-|\zeta|^{2m}}(1-\|f(\zeta)\|^2),\ \zeta\in {\Bbb D}. $

定理 3.1 证毕.

注3.1 定理 3.1 推广了文献[12] 的相应结果,当$m=1$时,定理 3.1 由 Liu 和 Dai 在文献[12] 中得到.

4 $H_m({\Bbb D,{\Bbb B}^p)}$ 中映照的模的 Schwarz-Pick 引理精确性

引理4.1 [12]$p$ 为偶数,$f=(f_{1},f_{2},\cdot\cdot\cdot,f_{n}) \in H({\Bbb D},{\Bbb B}^p)$,并设 $f_{i}(z)=\sum\limits^{\infty}_{v=0}a^{v}_{i}z^{v},\ i= 1,2,\cdots,n,\ z\in{\Bbb D}$,则

$ \sum\limits^{n}_{i=1}\sum\limits^{\infty}_{v=0}|a^{v}_{i}|^{p}\leq1. $

用类似于文献[12] 的方法,证明定理4.1.

定理4.1$f=(f_{1},f_{2},\cdot\cdot\cdot,f_{n})\in H_m({\Bbb D},\ {\Bbb B}^p),\ b\in{\Bbb D}$. 若

$ |\nabla \|f\|(b)|= \frac{m|b|^{m-1}}{1-|b|^{2m}}(1-\|f(b)\|^2),\ $

(I) 当 $f(b)=0$ 时,有

$ f(z)=\alpha \varphi_{b}(z),\ z\in {\Bbb D}; $

(II) 当 $f(b)\neq 0$ 时,有

$ \sum\limits^{n}_{i=1}\frac{f_{i}^{p-1}(b)f_{i}(z)\overline{f_{i}^{p}(b)}}{|f_{i}(b)|^{p}}=\|f(b)\|^{p-1}\frac{\|f(b)\|+{\rm e}^{{\rm i}\theta}\varphi_{b}(z)}{1+\|f(b)\|{\rm e}^{{\rm i}\theta}\varphi_{b}(z)},\ \ z\in {\Bbb D},\ \ $

其中 $\alpha \in {\Bbb C}^n$$\|\alpha \|=1$,而 $\varphi_{b}(z)=\frac{z^m-b^m}{1-(\bar{b}z)^m},\ z\in {\Bbb D}$,\ $\theta \in {\Bbb R}$.

要证定理 4.1,只需考虑下列等式即可.

$|\nabla \|h\|(0)|=1-\|h(0)\|^2,$ (4.1)

其中 $h \in H({\Bbb D},{\Bbb B}^p) $.

现考虑如下两种情形.

情形I$h(0)=0$ 时,由 (4.1) 式知

$ \|h'(0)\|=1. $

依据引理 4.1 得

$h(z)=\alpha z,\ z\in {\Bbb D},$ (4.2)

其中 $\alpha \in {\Bbb C}^n $$\|\alpha \|=1$.

情形II$h(0)\neq 0$ 时,令

$ g(z)=\|h(0)\|^{1-p}\sum\limits^{n}_{i=1}\frac{h_{i}^{p-1}(0)h_{i}(z)\overline{h_{i}^{p}(0)}}{|h_{i}(0)|^{p}},$

于是

$ |\nabla \|h\|(0)|=|g'(0)|=1-|g(0)|^2=1-\|h(0)\|^2. $

不难验证 $g \in H({\Bbb D},{\Bbb D})$,故

$ g(z)=\frac{\|h(0)\|+{\rm e}^{{\rm i}\theta}z}{1+\|h(0)\|{\rm e}^{{\rm i}\theta}z},\ \ \theta \in {\Bbb R},\ z\in {\Bbb D}. $

因此

$ \sum\limits^{n}_{i=1}\frac{h_{i}^{p-1}(0)h_{i}(z)\overline{h_{i}^{p}(0)}}{|h_{i}(0)|^{p}}=||h(0)||^{p-1}\frac{\|h(0)\|+{\rm e}^{{\rm i}\theta}\varphi_{b}(z)}{1+\|h(0)\|{\rm e}^{{\rm i}\theta}\varphi_{b}(z)},\ \theta \in {\Bbb R},\ z\in {\Bbb D}. $

再令

$h(z)=f\circ \sigma_{b}(z),$ (4.3)

其中

$\sigma_{b}(z)=\left(\frac{z+b^m}{1+\bar{b}^mz}\right)^{\frac{1}{m}},\ \ z,\ b \in {\Bbb D},\ b\neq 0.$ (4.4)

由 (4.3) 和 (4.4) 式可得

$h\in H({\Bbb D},{\Bbb B}^p)$

$h(0)=f(b),\ \ \ \frac{m|b|^{m-1}}{1-|b|^{2m}}h'(0)=f'(b).$ (4.5)

$|\nabla \|f\|(b)|= \frac{m|b|^{m-1}}{1-|b|^{2m}}(1-\|f(b)\|^2)$$f(b)=0$,则由 (1.3) 和 (4.5) 式知 $h(0)=0$,且

$|\nabla \|h\|(0)|=\|h'(0)\|=\frac{1-|b|^{2m}}{m|b|^{m-1}}\|f'(b)\| =\frac{1-|b|^{2m}}{m|b|^{m-1}}|\nabla \|f\|(b)| \\=1-||f(b)||^2 =1-\|h(0)\|^2.$

于是由 (4.2)式可得

$h(z)=\alpha z,\ \ z\in {\Bbb D},$ (4.6)

其中 $\alpha \in {\Bbb C}^n$$\|\alpha \|=1$. 再由 (1.3) 和 (4.3) 式便得

$ f(z)=\alpha \varphi_{b}(z),$

其中 $\varphi_{b}(z)=\frac{z^m-b^m}{1-(\bar{b}z)^m},\ z\in {\Bbb D}$.

$|\nabla \|f\|(b)|= \frac{m|b|^{m-1}}{1-|b|^{2m}}(1-\|f(b)\|^2)$$f(b)\neq 0$,则由(1.4)和(4.5)式,可得 $h(0)\neq 0$

$|\nabla \|h\|(0)|=\|h(0)\|^{1-p}\left|\sum\limits^{n}_{i=1}\frac{h_{i}^{p-1}(0)h'_{i}(0)\overline{h_{i}^{p}(0)}}{|h_{i}(0)|^{p}}\right| \\=\|f(b)\|^{1-p}\left|\sum\limits^{n}_{i=1}\frac{f_{i}^{p-1}(b)\frac{1-|b|^{2m}}{m|b|^{m-1}}f'_{i}(b)\overline{f_{i}^{p}(b)}}{|f_{i}(b)|^{p}}\right| \\=\frac{1-|b|^{2m}}{m|b|^{m-1}}||f(b)||^{1-p}\left|\sum\limits^{n}_{i=1}\frac{f_{i} ^{p-1}(b)f'_{i}(b)\overline{f_{i}^{p}(b)}}{|f_{i}(b)|^{p}}\right| \\=\frac{1-|b|^{2m}}{m|b|^{m-1}}|\nabla \|f\|(b)| \\=1-\|f(b)\|^2 =1-\|h(0)\|^2.$

于是

$\sum\limits^{n}_{i=1}\frac{h_{i}^{p-1}(0)h_{i}(z)\overline{h_{i}^{p}(0)}}{|h_{i}(0)|^{p}}=\|h(0)\|^{p-1}\frac{\|h(0)\|+{\rm e}^{{\rm i}\theta}z}{1+\|h(0)\|{\rm e}^{{\rm i}\theta}z},\ \theta \in {\Bbb R},\ z\in {\Bbb D}.$

再由 (4.3)式可得

$\sum\limits^{n}_{i=1}\frac{f_{i}^{p-1}(b)f_{i}(z)\overline{f_{i}^{p}(b)}}{|f_{i}(b)|^{p}}=\|f(b)\|^{p-1}\frac{\|f(b)\|+{\rm e}^{{\rm i}\theta}\varphi_{b}(z)}{1+\|f(b)\|{\rm e}^{{\rm i}\theta}\varphi_{b}(z)},\ \ z\in {\Bbb D},\ $

其中 $\varphi_{b}(z)=\frac{z^m-b^m}{1-(\bar{b}z)^m},\ z\in {\Bbb D},\ \theta \in {\Bbb R}$. 证毕.

注4.1 定理 4.1 表明定理 3.1 的估计是精确的.

参考文献
[1] 林运泳, 洪毅. Banach空间中全纯映射的若干性质. 数学学报 , 1995, 38 : 234–241.
Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces (in Chinese). Acta Math Sinica, 1995, 38: 234–241.
[2] Pavlovć M. A Schwarz lemma for the modulus of a vector-valued analytic functions. Proc Amer Math Soc, 2011, 139(3): 969–973. DOI:10.1090/S0002-9939-2010-10578-6
[3] Ruscheweyh S. Two remarks on bounded analytic functions. Serdica, 1985, 11: 200–202.
[4] Dai S Y, Pan Y F. A Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. Acta Math Sci, 2014, 34B(6): 1775–1780.
[5] Avkhadiev F G, Wirths K J. Schwarz-Pick inequalities for derivatives of arbitrary order. Constr Approx, 2003, 19: 265–277. DOI:10.1007/s00365-002-0503-4
[6] Dai S Y, Pan Y F. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proc Amer Math Soc, 2008, 136: 635–640.
[7] Liu Y, Chen Z H. Schwarz-pick estimates for holomorphic mappings from the polydisk to the unit ball. J Math Anal Appl, 2011, 376: 123–128. DOI:10.1016/j.jmaa.2010.10.040
[8] Liu Y, Chen Z H. Schwarz-Pick estimates for positive real part holomorphic functions on unit ball and polydisc. Science in China, 2010, 53(4): 1017–1024. DOI:10.1007/s11425-009-0205-5
[9] Liu Y, Chen Z H. Schwarz-Pick estimates for bounded holomorphc functions on class domains. Acta Math Sci, 2011, 31B(4): 1377–1382.
[10] Dai S Y, Chen H H. Schwarz-Pick estimates for partial derivatives of arbitary order of bounded holomorphic functions in the unit ball of Cn. Acta Math Sci, 2011, 31B(4): 1624–1632.
[11] Dai S Y, Chen H J, Pan Y F. The Schwarz-Pick lemma of high order in several variables. Michigan Math J, 2010, 59: 517–533. DOI:10.1307/mmj/1291213955
[12] Liu Y, Dai S Y. A note on Schwarz lemma for the modulus of holomorphic mappings on D. Acta Math Sci, 2015, 35B(1): 89–94.
[13] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003.