该文研究一类时滞微分方程边值问题〖JB({〗εx″(t)=f(t,x(t),x(t-τ(t)),\[Tx\](t),x′(t),ε),t∈(0,1),\=x(t)=φ(t,ε),t∈\[-τ,0\],h(x(1),x′(1),ε)=A(ε),[JB)]其中ε>0为小参数,τ(t)≥τ\-0>0,τ=\%\{max\}\%[DD(X]t∈\[0,1\][DD)]τ(t)<1,\[Tx\](t)=ψ(t)+∫\+t\-0k(t,x)x(s)ds为Volterra型算子。利用微分不等式理论证明了边值问题解的存在性,并给出了解的一 致有效渐近展开式。