数学物理学报 ›› 2003, Vol. 23 ›› Issue (4): 504-512.

• 论文 • 上一篇    

具非线性边界条件的Volterra型时滞微分方程边值问题奇摄动

 任景莉, 葛渭高   

  1. 北京理工大学数学系 北京 100081 郑州大学数学系郑州 450052
  • 出版日期:2003-08-25 发布日期:2003-08-25
  • 基金资助:

    国家自然科学基金(19871005)和国家教育部高校博士点专项基金(19900722 )资助

Singularly Perturbed Boundary Value Problems for Volterra Retarded Differential Equations with Nonlinear Boundary Conditions

 LIN Jing-Chi, GE Wei-Gao   

  1. 北京理工大学数学系 北京 100081 郑州大学数学系郑州 450052
  • Online:2003-08-25 Published:2003-08-25
  • Supported by:

    国家自然科学基金(19871005)和国家教育部高校博士点专项基金(19900722 )资助

摘要:

该文研究一类时滞微分方程边值问题〖JB({〗εx″(t)=f(t,x(t),x(t-τ(t)),\[Tx\](t),x′(t),ε),t∈(0,1),\=x(t)=φ(t,ε),t∈\[-τ,0\],h(x(1),x′(1),ε)=A(ε),[JB)]其中ε>0为小参数,τ(t)≥τ\-0>0,τ=\%\{max\}\%[DD(X]t∈\[0,1\][DD)]τ(t)<1,\[Tx\](t)=ψ(t)+∫\+t\-0k(t,x)x(s)ds为Volterra型算子。利用微分不等式理论证明了边值问题解的存在性,并给出了解的一 致有效渐近展开式。

关键词: 奇摄动; , 时滞微分方程; , 边值问题

Abstract:

In this paper, the authors study a kind of boundary value problems for functional differential equations with nonlinear boundary conditions〖JB({〗εx″(t)=f(t,x(t),x(t-τ(t)),\[Tx\](t),x′(t),ε),t∈(0,1),x(t)=φ(t,ε),t∈\[-τ,0\],h(x(1),x′(1),ε)=A(ε),[JB)]where ε>0 is a small parameter,  τ(t)≥τ\-0>0,τ=\%\{max\}\%[DD(X]t∈\[0,1\][DD)]τ(t)<1,\[Tx\](t)=ψ(t)+∫\+t\-0k(t,x)x(s)ds is a type of Volterra map. By using the t heory  of differential inequality, we prove the existence of the solution and uniforml y valid asymptotic expansions of the solution is given as well.

 

Key words: Singular perturbation; , Retarded differential equations;  , Boundary value prob lem

中图分类号: 

  • 34K10