数学物理学报 ›› 2003, Vol. 23 ›› Issue (4): 456-463.

• 论文 • 上一篇    下一篇

一类因果模型的可识别性条件

 梁宇, 郑忠国   

  1. 北京大学概率统计系 北京 |100871
  • 出版日期:2003-08-25 发布日期:2003-08-25
  • 基金资助:

    国家基金委和教育部基金的资助

The Identifiability Condition of Causal Effect for a Simple Causal Model

 LIANG Yu, ZHENG Zhong-Guo   

  1. 北京大学概率统计系 北京 |100871
  • Online:2003-08-25 Published:2003-08-25
  • Supported by:

    国家基金委和教育部基金的资助

摘要:

 因果问题在近代医学,生物学,社会科学的研究中占有非常重要的地位。通过因果关系预见某些行为或策略对研究对象的影响已经成为一些实际研究的最终目的。Rubin(1978)提出了解决因果问题的虚拟事实模型,建立了因果推断统计分析的基本框架。虚拟事实模型的因果效应是以实际观测数据为研究对象的,但又不完全由数据之间的相关性决定,因此在讨论因果效应时存在可识别性问题。如果因果效应可识别,则有可能利用观测数据直接计算因果效应。但是,众
所周知:在不加任何假设或限制的条件下,虚拟事实模型的因果效应是不可识别的。若要研究变量间的因果效应就必须对虚拟事实模型加入某些必要的限制,使因果效应在这些限制下可识别。郑忠国,张艳艳,童行伟在“因果模型因果效应的可识别性研究”中针对控制变量与协变量相互独立的一类模型的可识别性进行了研究,指出在某些特定的可替换性假设之下,模型的因果效应具有可识别性。该文将针对控制变量作用于协变量的虚拟事实模型进行可识别性研究。作者将指出:控制变量是否作用于协变量并不影响因果效应的可识别性和可替换性假设。并给出:此类模型因果效应可唯一确定的充要条件 。

关键词: 有向非循环图;干预;适应;因果效应;可识别性;辅助信息;可忽略性假设;可替换性假设

Abstract:

This paper, a research on causality of the directed acyclic  graph, sets up a counterfactual causal model for the causal graph in which control variable has the effect on the concomitants variable, and studies its identifiability with the ancillary information based on conditional independence. It is shown that under the assumption of replaceability,which is the generalization of the assumption of ignorability in the literature, the causal effect is identifiable. It is also shown that under the model wihch we discuss here, whether the control variable has the effect on the concomitants variable or not, the causal effects  have the same identifiability and replaceability.

Key words: Directed acyclic graph, Intervention, Compatibility, Causal effect, Ancillary information, Ignorability, Replaceability

中图分类号: 

  • 62P