在该文中, 令E表示一个迭代函数系统(X,T1,…, Tm). 的吸引子. 定义连续自映射 f : E→E为f(x)=T-1j(x), x∈ Tj(E), j=1, …, m . 给定Given ψ ∈CR(E), 令
Kψ(δ, n = sup{∣∑n-1k=0[ψ(f kx)-ψ(f ky)]|:y ∈ Bx (δ, n)},
这里Bx(δ, n) 表示Bowen球. 取一个扩张常数 ε, 记Kψ=supn Kψ(ε, n) , 定义ν(E)={ψ : Kψ < ∞}. 对f : E → E, 作为Ruelle的一个定理[3, 定理2.1]的一个应用, 我们证明每个ψ ∈ν(E)具有惟一的平衡态. 此结果推广了文献[12]中的主要结果.