数学物理学报

• 论文 • 上一篇    下一篇

两端固定的奇异梁方程的多重正解

姚庆六   

  1. (南京财经大学应用数学系 南京 210003)
  • 收稿日期:2006-01-19 修回日期:2007-12-30 出版日期:2008-08-25 发布日期:2008-08-25
  • 通讯作者: 姚庆六

Multiple Positive Solutions to a Singular Beam Equation Fixed at Both Ends

Yao Qingliu

  

  1. (Department of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210003)
  • Received:2006-01-19 Revised:2007-12-30 Online:2008-08-25 Published:2008-08-25
  • Contact: Yao Qingliu

摘要: n 是一个任意的自然数. 证明了一个两端固定的奇异梁方程的 n 个正解的存在性, 其中非线性项是一个Carathéodory 函数. 主要工具是涉及非线性项的高度函数与锥压缩锥拉伸型的 Krasnoselskii不动点定理. 进一步的研究表明,如果非线性项在零点和无穷远处的增长极限均为无界函数, 该方程仍可能具有正解.

关键词: 非线性常微分方程, 边值问题, 奇异性, 正解, 存在性, 多解性

Abstract: Let n be an arbitrary natural number. The existence of n positive solutions is proved for a singular beam equation fixed at both ends, where the nonlinear term is a Caratheodory function. Main tools are height functions concerned
with nonlinear term and Guo-Krasnoselskii fixed point theorem of cone expansion-compression type. Further research shows that the equation may have positive solution if the growth limits of nonlinear term at zero and infinity are unbounded functions.

Key words: Nonlinear ordinary differential equation, Boundary value problem, Singularity, Positive solution, Existence, Multiplicity

中图分类号: 

  • 34B15