令E\-m=(-∞,∞)\∪[DD(]m[]j=1[DD)](α\-j,β\-j).函数类[WTHT]N[WTBX](E\-m)表示在上半复平面解析且虚部非负, 在诸(α\-j,β\-j)(j=1,…,m)内解析且为实值的函数全体.该文用Hankel 向量方法建立[WTHT]N[WTBX](E\-m)函数类 中含有限(或无限可数)插值点的NevanlinnaPick 问题与集合E\-m上
相关的非标准截断(或全)广义Stieltjes 矩量问题解集之间的一一对应.用类似于Riesz的办法建立E\-m上非标准截断广义Stieltjes矩量问题的可解性准则,从而获得了[WTHT]N[WTBX](E\-m)函数类中NevanlinnaPick问题的可解性准则.