数学物理学报 ›› 2004, Vol. 24 ›› Issue (4): 426-434.

• 论文 • 上一篇    下一篇

向量集值优化超有效解的对偶问题

 盛宝怀, 周颂平, 刘三阳   


  1. 绍兴文理学院数学系绍兴 312000)
    浙江工程学院数学研究所杭州 310018)
    西安电子科技大学应用数学系西安 710071)
  • 出版日期:2004-08-25 发布日期:2004-08-25
  • 基金资助:

    浙江省自然科学基金(102002)和国家自然科学基金(10371024)资助

Duality in Vector Optimization of Setvalued Maps with Super Efficient Solutions

 CHENG Bao-Fu, ZHOU Rong-Beng, LIU San-Yang   

  • Online:2004-08-25 Published:2004-08-25
  • Supported by:

    浙江省自然科学基金(102002)和国家自然科学基金(10371024)资助

摘要:

借助于Contingent切锥和集值映射的上图而引入的有关集值映射的Contingent切导数,对约束集值优化问题的超有效解建立了最优性KuhnTucker必要及充分性条件,借此建立了向量集值优化超有效解的Wolfe型和MondWeir型对偶定理.

关键词: Contingent切锥, 集值映射, 对偶

Abstract:

A generalized KuhnTucker optimality condition of constrained vector optimization of setvalued maps  with   super efficiency is obtained with the help of the  Contingent tangent derivatives which are developed with the aid of Contingent tangent cone and the epigraphy of the setvalued map, with which the weak duality theorems, direct duality theorems and the converse the orems for Wolfe type and MondWeir type duality are established.

Key words: Contingent tangent cone, Setvalued map, Super efficiency, Duality.