数学物理学报 ›› 2004, Vol. 24 ›› Issue (4): 409-419.

• 论文 • 上一篇    下一篇

伪辛空间F^(2v+2+l)_q中一类2维子空间的结合方案及其结构

张更生   


  1. 河北师范大学数学与信息科学学院
  • 出版日期:2004-08-25 发布日期:2004-08-25
  • 基金资助:

    河北省自然科学基金(199174)、河北师范大学青年基金资助

The Association Schemes of a Kind of 2 dimensional Subspaces of Pseudo symplectic Space F^(2v+2+l)_q and Its Structure

 ZHANG Geng-Sheng   

  • Online:2004-08-25 Published:2004-08-25
  • Supported by:

    河北省自然科学基金(199174)、河北师范大学青年基金资助

摘要:

该文利用伪辛空间F\-q\+\{(2v+2+l)中一类2维非迷向子空间构作了具有2q-1个结合类的交换的但非对称的结合方案,并且讨论了它的结构,证明了它是其基础域上的加法群和乘法群上的熟知的结合方案的扩张。

关键词: 伪辛空间, 结合方案, 结合方案的扩张

Abstract:

This paper obtains a commutative and nonsymmetric association scheme of class 2q-1 by using a kind of 2dimensional nonisotropic subspaces of singularpseudosymplectic space F\+\{(2v+2+l)\-q and  discusses its structure. This scheme can be obtained by the
extension of those of additive group and multiplicative group of the base fieldand some other simple association schemes.

Key words: Pseudosymplectic space, Association schemes, Extension of association schemes