[1]Corley H W. Optimality conditions for maximizations of
setvalued functions. J Optim Theory Appl, 1988, 58(1): 1-10
[2]Chen G Y, Jahn J. Optimality conditions for setvalued optimization prob
lems. Math Meth Oper Res, 1998, 48(2): 187-200
[3]盛宝怀,刘三阳。Benson真有效意义下集值优化的广义最优性条件. 数学学报
,2003, 46(3): 611-620
[4]Sheng Baohuai, Liu Sanyang. The optimality conditions of nonconvex
setvalued vector optimization. Acta Mathematica Scientia,
2002, 22B(1): 47-55
[5]盛宝怀,刘三阳. 用广义梯度刻画集值优化Benson真有效解. 应用数学学报, 2
002, 28(1): 22-28
[6]Sheng Baohuai. The weak Benson proper efficient subgradient and the optimality c
onditions of setvalued optimization.
Journal of Systems Science and Complexity, 2002, 15(1): 69-76
[7] Sheng Baohuai, Liu Sanyang. Modified Lagrange duality of vector op
timization of setvalued maps with
super efficiency. Acta Analysis Functionalis Applicata, 2001, 3(1):
29-36
[8]Sheng Baohuai, Liu Sanyang. On the generalized Fritz John optimality conditions
of vector optimization with setvalued
maps under Benson proper efficiency. Applied Mathematics and Mechanics, 2002, 23(12): 1444-1451
[9]刘三阳. 非光滑非凸多目标规划的Wolfe型对偶性. 数学研究与评论, 1991, 11(1): 97-101
[10] 伍小林. 一类非光滑多目标规划的对偶理论. 西安电子科技大学学报, 1992,19(1): 63-71
[11]Sach P H. Invex multifunctions and duality. Numer Funct Anal and Optim,
1991, 12(5-6): 575-591
[12]Egudo R R. Proper efficiency and multiobjective duality in nonlinear programming
. J Inform and Optim Sci, 1987, 8(1): 155-161
[13] Weir T. A duality for multiobjective fractional programming. Bull Austral Math
Soc, 1986, 34(2): 415-425
[14]Egudo R R. Efficiency and generalized convex duality for multiobjective programs
. J Math Anal Appl, 1989, 138(1): 84-94
[15]Suneja S K. Duality in nonlinear programming involving semilocally Bvex and re
lated functions. J Inform and Optim Sci, 1994, 15(1): 137-151
[16]刘三阳,盛宝怀. 非凸向量集值优化Benson真有效解的最优性条件与对偶. 应用数学学报, 2
003, 26(2): 337-344
[17]Borwein J M, Zhuang D. Super efficiency in vector optimization. Trans Amer Math
Soc, 1993, 338(1): 105-12
[18]Aubin J P, Frankowska H. Setvalued analysis. Boston:Birkhauser, 1990.121-126
[19] Rong W D, Wu Y N. Characterizations of super efficiency in coneconvex
like vector optimization
with setvalued maps. Math Meth Oper Research, 1998, 48(2): 245-258
[20]胡毓达. 多目标规划有效性理论. 上海:上海科学技术出版社, 1994.126-137
[21] 盛宝怀,刘三阳. 关于向量集值优化的Benson真有效性. 应用数学,2000,13(4):95-99
[22] 凌晨. 集值映射目标规划的KT最优性条件. 系统科学与数学,2000,20(2):196-202
[23]杨新民, 汪寿阳. 关于集值映射向量优化的有效性. 多目标决策进展'98. 香港:广宇咨讯服务有限公司, 1998.12-16
[24] 范丽亚, 刘三阳。二层规划可行解的存在性。数学物理学报, 2003, 23A(6): 739-74
[25] 阮颖彬, 陈绍雄。对偶空间上凸函数的逼近。数学物理学报, 2004, 24A](1): 116-122
|