数学物理学报 ›› 2004, Vol. 24 ›› Issue (4): 469-474.

• 论文 • 上一篇    下一篇

判定P_n(Γ)的Hilbert基的一个充要

 岑燕明, 岑翼刚   

  1. 贵州民族学院数学系

    华中科学技术大学
  • 出版日期:2004-08-25 发布日期:2004-08-25
  • 基金资助:

    国家自然科学基金(10261002)和贵州省科学技术基金资助

A Necessary and Sufficient Condition for Determining a Hilbert Basis of P_n(Γ)

 CEN Yan-Meng, CEN Yi-Gang   

  • Online:2004-08-25 Published:2004-08-25
  • Supported by:

    国家自然科学基金(10261002)和贵州省科学技术基金资助

摘要:

设Γ是一作用在R^n上的紧李群,P_n(Γ)是Γ不变的多项式芽构成的环. Hilbert-Weyl定理证明了对于P_n(Γ)总存在一组由Γ不变的齐次多项式芽组成的Hilbert基. 然而,如何从Γ不变的齐次多项式芽中选出一组Hilbert基?如何判定Γ不变的齐次多项式芽的一个有限集就是P_n(Γ)的一组Hilbert基?该文借助于Noether环和不变积分的某些基本性质以及奇点理论的有关定理,证明了判定P_n(Γ)的Hilbert基的一个充要条件. 这对某些P_n(Γ)提供了计算一组Hilbert基的新途径.

关键词: 紧李群, 不变多项式芽环, Hilbert基

Abstract:

Let Γ be a compact Lie group acting on R^n and P_n(Γ) the ring of Γ invariant polynomial germs under Γ. Hilbert-Weyl theorem shows that there is a Hilbert basis consisting of Γ invariant homogeneous polynomial germs for P_n(Γ). However, it is not clear, how to choose a Hilbert basis from Γ invariant homogeneous polynomial germs and how to determine that a finite set of Γ invariant homogeneous polynomial germs is a Hilbert basis of P_n(Γ).  In this paper, by means of some fundamental properties of Noether's ring and invariant integration as well as the relevant theorems in the theory of singularities, a necessary and sufficient condition is  proved for determining a Hilber basis of P_n(Γ). This will provide a new way to determine of a Hilbert basis for some P_n(Γ).

Key words: Compact Lie group, Ring of invariant polynomial germs, Hilbert basis