[1]Gabr M M. On the thirdorder moment structure and bispectral ana
lysis of some bilinear time series. J Time Ser Anal, 19889(1):385-401
[2] Guegan D, Pham D T. An note on the estimation of the parameter of the dia
gonalbilinear model by the method of least square. Scand J Stat, 1989, 1 ,6(1): 129-136
[3Sesay S A O, Subba Rao T. YuleWalker type difference equations for high
erordermoments and cumulants for bilinear time series models. J Time Ser Anal,
1988, 9(2): 385-401
[4] Sesay S A O, Subba Rao T. Difference equations for higherorder moments
and cumulants for the bilinear time series model BL(p,0,p,1)\$. J Time S
er Anal, 1991, 12(1): 159-177
[5] Subba Rao T. The Bispectral Analysis of Nonlinear Stationary Time Series
with Reference to Bilinear Time Series Models. Handbook of Statistics. Vol 3
, Elsevier Science Publisher, 1983. 293-319
[6] Terdik G, Subba Rao T. On WienerIto representation and the best linear
prediction for bilinear time series. J Appl Prob, 1989, 26(2): 274-286
[7]Terdik G, Meaux L. The exact bispectral for bilinear realizable processes
with Hermite degree 2 Adv. Appl Prob, 1992, 23(4): 798-808
[8] Terdik G. Bilinear Stochastic Models and Related Problems of Nonlinear Ti
me Series Analysis. Lecture Notes in Statistics. Vol 442, New York: Springer
, 1999
[9] 范金城, 陈绍忠. 双线性BL\$(p,1,p,1)\$序列参数的高阶矩估计. 工程数学学报,
1997, 14(3): 31-36
[10] 达庆东,王式安。一类双线性时间序列的矩估计. 北京理工大学学报, 1999,19(2): 136-142
[11]王海斌,韦博成,陈浩球. LSDBL\$(p,q,r)\$序列的频域分析. 东南大学学报, 2001, 31(1): 15-19 |