[1]Bondy J A, Murty U S R. Graph Theory with Applications.
London: Macmillan and New York: Elsevier, 1979
[2]刘彦佩. 图的可嵌入性理论. 北京: 科学出版社, 1994
[3]Gross J L, Tucker T W. Topological Graph Theory. New York: Wiley, 1987
[4]Xoung N H. How to determine the maximum genus of a graph. J
Combinatorial Theory Sereis B, 1979, 26: 217-225
[5]Nebesky L. \%N\-2\%locally connected graphs and their upper
embeddability. J Czechoslovak Math, 1991,41: 731-735
[6]Skoviera M. The decay number and the maximum genus of a graph.
Math Slovaca, 1992, 42(4): 391-406
[7]Stahl S. On the number of maximum genus embeddings of almost all graphs.
Euro J Combinatorics, 1992, 13: 119-126
[8]Chen J, Archdeacon D, Gross J L. Maximum genus and connectivity.
Discrete Math, 1996, 149: 11-29
9]Hunglin Fu, Minchu Tsai. The maximum genus of diameter three graphs.
Australasian J Combinatorics, 1996,14: 187-197
[10]Yuanqiu Huang, Yanpei Liu. Maximum genus and maximum nonseparating
indepedent set of a 3regular graph. Discrete Math, 1997, 176: 149-158
[11]Yuangqiu Huang, Yanpei Liu. Maximum genus and girth of graphs.
Discrete Math, 1999,
[STHZ]194
[STBZ]: 253-259\=
[12]黄元秋. 与最小度有关的图的最大亏格的下界. 应用数学学报, 1999, 22(2): 193-198 |