设W\-m(R)是有限局部环R=Z/p\+kZ上所有m阶交错矩阵所构成的集合(p是素数,k>1). 该文通过确定R上任意m阶交错矩阵的标准形,计算出W\-m(R)在线性群GL\-m(R)作用下的轨道数及n(2r,2t,\{r\-1,\:,r\-1\}[TXX}][DD(X]s\-1[DD)],\:,\{r\-l,\:,r\-l\}[TXX}][DD(X]s\-l[DD)]),其中W(2r,2t,\{r\-1,\:,r\-1\}[TXX}][DD(X]s\-1[DD)],\:,\{r\-l,\:,r\-l\}[TXX}][DD(X]s\-l[DD)]) (∑[DD(]l[]i=1[DD)]s\-i=t)表示不变因子为(2r,2t,\{r\-1,\:,r\-1\}[TXX}][DD(X]s\-1[DD)],\:,\{r\-l,\:,r\-l\}[TXX}][DD(X]s\-l[DD)])的所有m阶交错矩阵构成的集合,n(2r,2t,(2r,2t,\{r\-1,\:,r\-1\}[TXX}][DD(X]s\-1[DD)],\:,\{r\-l,\:,r\-l\}[TXX}][DD(X]s\-l[DD)])表示其中的元素个数. 最后,作者利用有限局部环R上交错矩阵的标准形构作了一个Cartesian认证码,并计算出其全部参数.