[1]Love A H. A Treatise on the Mathematical Theory of Elasticity. New York: Dover1964
[2]Ferreira J, Larkin N A. Global solvability of a mixed problem for a no
nlinear hyperbolicparabolic equation in noncylindrical domains. Portugaliae Math, 1996, 53(3): 381-395
[3]尚亚东. 方程utt-Δu-Δut-Δutt=f(u)的初边值
问题. 应用数学学报,2000, 23(4): 385-393
[4]Wang Shubin, Chen Guowang. Existence and nonexistence of global solution
s for nonlinear hyperbolic equation of higher order. Comment. Math Univ Caroli
nae, 1995, 36(3): 475-487
[5]陈国旺,王书彬,张宏伟. n维IMBq方程的初边值问题. 数学年刊,2001, 22A(4): 453-460
[6]Webb G. Existence and asymptotic behavior for a strongly damped nonlinear
wave equation. Canad J Math,1980, 32(3): 631-643
[7]Pucci P, Serrin J. Asymptotic stability for nonautonomous dissipative
wave equation. Comm Pure Appl Math, 1996, 49(2): 177-216
[8]Nakao M. A difference inequality and its application to nonlinear evolut
ion equation. J Math Soc Japan, 1978, 30(4): 747-762
[9]Levine H A, Serrin J. Global nonexistence theorems for quasilinear evo
lution equations with dissipation. Arch Rational Mech Anal, 1997, 137(3): 341-361
[10]Levine H A, Pucci P, Serrins J. Some remarks on global nonexistence for nonautonomous abstract evolution equations.
Colorado: Contemporary Mathematics, 1997. 253-263
[11]Sattinger D H. On global solutions of nonlinear hyperbolic equation. Arc
h Rational Mech Anal, 1968, 30(2): 148-172
[12]Payne L E, Sattinger D H. Saddle points and instability of nonlinea
r hyperbolic equations. Israel J Math, 1975, 22(3): 273-303
[13]Lions J L. Quelques méthodes de Résolution des Problèmes aux Limites
nonlinéaires. Paris: Dunod, 1969 |