[1]Bell D E,Shapiro J F. A convergent duality theory for integer programming.Operations Research,1977,25: 419-443
[2]Fisher M L.The Lagrangian relaxation method for solving integer programming p roblems. Management Science,1981,27:1-18
[3]Geoffirion A M.Lagrangian relaxation for integer programming.Math Programming Stud,1974,2:82-114
[4]Goh C J, Yang X Q.A sufficient and necessary condition for nonconvex constrained optimization.Appl Math Lett,1997,10: 9-12
[5]Guignard M, Kim S.Lagrangian decomposition: a model yielding stronger Lagrangian relaxation bounds.Mathematical Programming, 1993, 33: 262-273
[6]Li D. Zero duality gap for a class of nonconvex optimization problem.J Opti Theory Appl, 1995, 85: 309-324
[7]Li D. Zero duality gap in integer programming:p norm surrogate constrain t method. Operations Research Letter,1999, 25: 89-96
[8]Llewellyn D C, Ryan J. A primal dual integer programming algorithm. Disc rete Appl Math, 1993, 45: 262-273
[9]Michelon P N,Maculan N. Lagrangian decomposition for integer nonlinear progra mming with linear constrains.Mathematical Programming,1991, 52: 303-313
[10]Shapiro J F.A survey of Lagrangian techniques for discrete optimization. Annal s of Discrete Mathematics, 1979, 5: 113-138
[11]Sun X L,Li D. Valueestimation function method for constrained global optimiz ation. J Opti Theory Appl,1999,102: 385-409
[12]White D J.Weighting factor extensions for finite multiple objective vector min imization problems.European Journal of Operations Research,1988,36: 256-265
[13]Williams H P.Duality in mathematics and linear and integer programming.J Opti Theory Appl, 1996,90:257-278
[14]Xu Z K. Local saddle points and convexification for nonconvex optimizatin problems.J Opti Theory Appl, 1997,100: 257-278
|