Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (2): 602-614.doi: 10.1007/s10473-025-0218-3
Previous Articles Next Articles
Peng Chen1,2,*, Longjiang Gu3, Yan Wu4
Received:
2024-02-28
Online:
2025-03-25
Published:
2025-05-08
Contact:
*Peng Chen, E-mail: pengchen729@sina.com
About author:
Longjiang Gu, E-mail: gulongjiang0@163.com; Yan Wu, E-mail: yanwu9977@163.com
Supported by:
CLC Number:
Peng Chen, Longjiang Gu, Yan Wu. MULTIPLE SOLUTIONS FOR A HAMILTONIAN ELLIPTIC SYSTEM WITH SIGN-CHANGING PERTURBATION[J].Acta mathematica scientia,Series B, 2025, 45(2): 602-614.
[1] Ackermann N. On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248: 423-443 [2] Alves C, Mukherjee T. Existence and multiplicity of solutions for a class of Hamiltonian systems. Monatsh Math, 2020, 192: 269-289 [3] Bartsch T, Ding Y. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math Nachr, 2006, 279: 1267-1288 [4] Bartsch T, Ding Y. On a nonlinear Schrödinger equation with periodic potential. Math Ann, 1999, 313: 15-37 [5] Bartsch T, de Figueiredo D. Infinitely many solutions of nonlinear elliptic systems. Progress in Nonlinear Differential Equations and Their Applications, 1999, 35: 51-67 [6] Batkam C. On a superquadratic elliptic system with strongly indefinite structure. Appl Math Comput, 2014, 233: 243-251 [7] Bernini F, Bieganowski B. Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities. Calc Var Partial Differential Equations, 2022, 61: Art 182 [8] Bieganowski B.Schrödinger-type equations with sign-changing nonlinearities: A survey. arXiv:1810.01754 [9] Bonheure D, Denis, Santos E, Tavares H. Hamiltonian elliptic systems: a guide to variational frameworks. Port Math, 2014, 71(3): 301-395 [10] Cassani D, Tarsi C. Existence of solitary waves for supercritical Schrödinger systems in dimension two.Calc Var Partial Differential Equations, 2015, 54: 1673-1704 [11] Chen S, Tang X. On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity. Calc Var Partial Differential Equations, 2021 60(3): Art 95 [12] Chen J, Zhang Q. Ground state solution for strongly indefinite Choquard system. Nonlinear Anal, 2022 220: 112855 [13] Chen S, Wang C. An infite-dimensional linking theorem without upper semi-continuous assumption and its applications. J Math Anal Appl, 2014 420: 1552-1567 [14] Coti Zelati V, Rabinowitz P. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J Amer Math Soc, 1991 4: 693-727 [15] Coti Zelati V, Rabinowitz P. Homoclinic type solutions for a semilinear elliptic PDE on ![]() ![]() [16] de Figueiredo D. Semilinear elliptic systems: existence, multiplicity, symmetry of solutions. Handbook of Differential Equations: Stationary Partial Differential Equations, 2008, 5: 1-48 [17] De Figueiredo D, do Ó J, Zhang J. Ground state solutions of Hamiltonian elliptic systems in dimension two. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2020, 150(4): 1737-1768 [18] De Figueiredo D, Felmer P. On superquadratic elliptic systems. Trans Amer Math Soc, 1994, 102: 188-207 [19] Ding Y, Lee C. Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J Differential Equations, 2006, 222: 137-163 [20] Furtado M, de Marchi R. Asymptotically periodic superquadratic Hamiltonian system. J Math Anal Appl, 2016, 433: 712-731 [21] Gu L. Multiple solutions for a Choquard system with periodic potential. J Math Anal Appl, 2020, 484: 123704 [22] Gu L, Zhou H. An improved fountain theorem and its application. Adv Nonlinear Stud, 2017, 17: 727-738 [23] Han P. Strongly indefinite systems with critical Sobolev exponents and weights. Appl Math Lett, 2004, 17: 909-917 [24] Hulshof J, Vandervorst R. Differential systems with strongly indefinite variational structure. J Funct Anal, 1993, 114: 32-58 [25] Kryszewski W, Szulkin A. Generalized linking theorem with an application to semilinear Schrödinger equation. Adv Differential Equations, 1998, 3: 441-472 [26] Kuchment P.The mathematics of photonic crystals// Bao G, Cowsar L, Masters W. Math Model Opt Sci. Philadephia: SIAM, 2001: 207-272 [27] Leuyacc Y, Soares S. On a Hamiltonian system with critical exponential growth. Milan J Math, 2019, 87 105-140 [28] Li G, Szulkin A. An asymptotically periodic Schrödinger equation with indefinite linear part. Commun Contemp Math, 2002, 4: 763-776 [29] Li G, Yang J. Asymptotically linear elliptic systems. Comm Partial Differential Equations, 2004, 29: 925-954 [30] Li G, Wang C. Multiple solutions for a semilinear elliptic system in ![]() ![]() [31] Li G, Wang C. The existence of nontrivial solutions to a semilinear elliptic system on ![]() ![]() [32] Liao F, Tang X, Zhang J. Existence of solutions for periodic elliptic system with general superlinear nonlinearity. Z Angew Math Phys, 2015, 66: 689-701 [33] Liao F, Zhang W. New asymptotically quadratic conditions for Hamiltonian elliptic systems. Adv Nonlinear Anal, 2022, 11: 469-481 [34] Liu Z. Infinitely many solutions for elliptic systems with strongly indefinite variational structure. Acta Math Sci, 2010, 30B(1): 55-64 [35] Nie W. Optical nonlinearity: phenomena, applications,materials. Adv Mater, 1993, 5: 520-545 [36] Pankov A. Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J Math, 2005, 73 : 259-287 [37] Ruf B. Superlinear elliptic equations and systems. Handbook of Differential Equations: Stationary Partial Differential Equations, 2008, 5: 211-276 [38] Soares S, Leuyacc Y. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Commun Contemp Math, 2018, 20(8): 1750053 [39] Sun J, Chen H, Chu J. On periodic Hamiltonian elliptic systems with spectrum point zero. Math Nachr, 2012, 285(17/18): 2233-2251 [40] Tang X, Lin X, Yu J. Nontrivial solutions for Schrödinger equation with local super-quadratic conditions. J Dynam Differential Equations, 2019, 31(1): 369-383 [41] Tang X, Chen S, Lin X, Yu J. Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions. J Differ Equ, 2020, 268: 4663-4690 [42] Tang X, Chen S. Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differential Equations, 2017, 55: Art 110 [43] Toon E, Ubilla P. Hamiltonian systems of Schrödinger equations with vanishing potentials. Commun Contemp Math, 2022, 24(1): 2050074 [44] Zhang R, Chen J, Zhao F. Multiple solutions for superlinger elliptic systems of Hamiltonian type. Discrete Contin Dyn Syst, 2011, 30: 1249-1262 [45] Zhao F, Zhao L, Ding Y. A note on superlinear Hamiltonian elliptic systems. J Math Phys, 2009, 50: 112702 [46] Zhao F, Zhao L, Ding Y. Multiple solutions for a superlinear and periodic wlliptic system on ![]() ![]() [47] Zhao F, Zhao L, Ding Y. Multiple solutions for asymptotically linear elliptic systems. NoDEA Nonlinear Differential Equations Appl, 2008, 15: 673-688 |
[1] | Lucas da Silva, Marco A. S. Souto. A GENERALIZED CHOQUARD EQUATION WITH WEIGHTED ANISOTROPIC STEIN-WEISS POTENTIAL ON A NONREFLEXIVE ORLICZ-SOBOLEV SPACES [J]. Acta mathematica scientia,Series B, 2025, 45(2): 569-601. |
[2] | Changyu GUO, Changlin XIANG, Gaofeng ZHENG. REFINED CONSERVATION LAW FOR AN EVEN ORDER ELLIPTIC SYSTEM WITH ANTISYMMETRIC POTENTIAL [J]. Acta mathematica scientia,Series B, 2024, 44(6): 2111-2124. |
[3] | Xu Zhang, Hao zhai, Fukun zhao. A COMPACT EMBEDDING RESULT FOR NONLOCAL SOBOLEV SPACES AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR NONLOCAL SCHRÖDINGER EQUATIONS* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1853-1876. |
[4] | Bin Han, Ningan Lai, Andrei Tarfulea. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM [J]. Acta mathematica scientia,Series B, 2024, 44(3): 865-886. |
[5] | Yuxi Meng, Xiaoming He. MULTIPLICITY OF NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH DOUBLY CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2024, 44(3): 997-1019. |
[6] | Yansheng ZHONG, Yongqing LI. MULTIPLE POSITIVE SOLUTIONS TO A CLASS OF MODIFIED NONLINEAR SCHRÖDINGER EQUATION IN A HIGH DIMENSION∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1819-1840. |
[7] | Qingye Zhang, Chungen Liu. HOMOCLINIC SOLUTIONS NEAR THE ORIGIN FOR A CLASS OF FIRST ORDER HAMILTONIAN SYSTEMS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1195-1210. |
[8] | Yuanyuan Luo, Dongmei Gao, Jun Wang. EXISTENCE OF A GROUND STATE SOLUTION FOR THE CHOQUARD EQUATION WITH NONPERIODIC POTENTIALS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 303-323. |
[9] | Kuo-Chang CHEN. ON ACTION-MINIMIZING SOLUTIONS OF THE TWO-CENTER PROBLEM [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2450-2458. |
[10] | Jin DENG, Benniao LI. A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRÖDINGER SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1743-1764. |
[11] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[12] | Li WANG, Kun CHENG, Jixiu WANG. THE MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR THE KIRCHHOFF-CHOQUARD EQUATION WITH MAGNETIC FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1453-1484. |
[13] | Chunyu LEI, Jiafeng LIAO, Changmu CHU, Hongmin SUO. A NONSMOOTH THEORY FOR A LOGARITHMIC ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J]. Acta mathematica scientia,Series B, 2022, 42(2): 502-510. |
[14] | Nemat NYAMORADI, Abdolrahman RAZANI. EXISTENCE TO FRACTIONAL CRITICAL EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1321-1332. |
[15] | Yutong CHEN, Jiabao SU, Mingzheng SUN, Rushun TIAN. MULTIPLE SOLUTIONS OF SOME ELLIPTIC SYSTEMS WITH LINEAR COUPLINGS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1141-1150. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 21
|
|
|||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||
Discussed |
|