Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (1): 303-323.doi: 10.1007/s10473-023-0117-4
Previous Articles Next Articles
Yuanyuan Luo, Dongmei Gao, Jun Wang†
Received:
2021-05-18
Revised:
2022-06-11
Published:
2023-03-01
Contact:
†Jun WANG.E-mail: wangmath2011@126.com
About author:
Yuanyuan Luo,E-mail:lyy201901@126.com; Dongmei Gao,E-mail:mei3221652898@126.com
Supported by:
Yuanyuan Luo, Dongmei Gao, Jun Wang. EXISTENCE OF A GROUND STATE SOLUTION FOR THE CHOQUARD EQUATION WITH NONPERIODIC POTENTIALS*[J].Acta mathematica scientia,Series B, 2023, 43(1): 303-323.
[1] Lieb E H.Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies in Appl Math, 1977, 57(2): 93-105 [2] Pekar S I.Untersuchungüber die Elektronentheorie der Kristalle. Akademie-Verlag, 1954 [3] Jones K R W. Newtonian quantum gravity. Austral J Phys, 1995, 48(6): 1055-1082 [4] Moroz I M, Penrose R, Tod P.Spherically-symmetric solutions of the Schrödinger-Newton equations. Classical & Quantum Gravity, 1998, 15(9): 2733-2742 [5] Lions P L.The Choquard equation and related questions. Nonlinear Anal, 1980, 4(6): 1063-1072 [6] Lions P L.The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1(2): 109-145 [7] Lions P L.The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1(4): 223-283 [8] Ackermann N.On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248(2): 423-443 [9] Wei J, Winter M.Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50(1): 012905 [10] Ma L, Zhao L.Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195(2): 455-467 [11] Moroz V, Van Schaftingen J.Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265(2): 153-184 [12] Moroz V, Van Schaftingen J.Existence of ground states for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367(9): 6557-6579 [13] Moroz V, Van Schaftingen J.Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains. J Differ Equ, 2013, 254(8): 3089-3145 [14] Moroz V, Van Schaftingen J.A guide to the Choquard equation. J Fixed Point Theory Appl, 2017, 19(1): 773-813 [15] Moroz V, Van Schaftingen J.Ground states of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Comm Contemp Math, 2015, 17(05): 1550005 [16] Cao D.The existence of nontrivial solutions to a generalized Choquard-Pekar equation. Acta Math Sci, 1989, 9(1): 101-112 (in Chinese) [17] Buffoni B, Jeanjean L, Stuart C A.Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc Amer Math Soc, 1993, 119(1): 179-186 [18] Alves C O, Nóbrega A B, Yang M B.Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differential Equations, 2016, 55(3): 1-28; Proc Amer Math Soc, 1993, 119(1): 179-186 [19] Lenzmann E.Uniqueness of ground states for pseudorelativistic Hartree equations. Analysis & PDE, 2009, 2(1): 1-27 [20] Ghimenti M, Van Schaftingen J.Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271(1): 107-135 [21] Cingolani S, Clapp M, Secchi S.Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63(2): 233-248 [22] Clapp M, Salazar D.Positive and sign changing solutions to a nonlinear Choquard equation. J Math Anal Appl, 2013, 407(1): 1-15 [23] Cingolani S, Secchi S.Ground states for the pseudo-relativistic Hartree equation with external potential. Proc Roy Soc Edinburgh Sect A, 2015, 145(1): 73-90 [24] Cingolani S, Clapp M, Secchi S.Intertwining semiclassical solutions to a Schröinger-Newton system. Discrete Contin Dyn Syst Ser S, 2013, 6(4): 891-908 [25] Cingolani S, Secchi S, Squassina M.Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc Roy Soc Edinburgh Sect A, 2010, 140(5): 973-1009 [26] Moroz V, Van Schaftingen J.Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52(1): 199-235 [27] Cingolani S, Secchi S.Semiclassical analysis for pseudo-relativistic Hartree equations. J Differ Equ, 2015, 258(12): 4156-4179 [28] Dohnal T, Plum M, Reichel W.Surface gap soliton ground states for the nonlinear Schrödinger equation. Comm Math Phys, 2011, 308(2): 511-542 [29] Lieb E H, Loss M.Analysis. volume 14 of Graduate Studies in Math. Providence, RI: Amer Math Soc, 2001 [30] Wang J, Tian L X, Xu J X, et al.Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth. Z Angew Math Phys, 2015, 66(5): 2441-2471 [31] Ruiz D.The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237(2): 655-674 [32] Struwe M.Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Berlin: Springer-Verlag, 2008 [33] Pankov A.Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J Math, 2005, 73(1): 259-287 [34] Liu Z L, Su J B, Wang Z Q.Solutions of elliptic problems with nonlinearities of linear growth. Calc Var Partial Differential Equations, 2009, 35(4): 463-480 [35] Zhu M C, Wang J, Qian X Y.Existence of solutions to nonlinear Schrödinger equations involving NLaplacian and potentials vanishing at infinity. Acta Math Sin Engl Ser, 2020, 36(10): 1151-1170 [36] Jiang Y S, Zhou H S.Bound states for a stationary nonlinear Schrödinger-Poisson system with sign-changing potential in R3. Acta Math Sci, 2009, 29B(4): 1095-1104 |
[1] | Jin DENG, Benniao LI. A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRÖDINGER SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1743-1764. |
[2] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[3] | Li WANG, Kun CHENG, Jixiu WANG. THE MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR THE KIRCHHOFF-CHOQUARD EQUATION WITH MAGNETIC FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1453-1484. |
[4] | Jinlan TAN, Yongyong LI, Chunlei TANG. THE EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTIONS FOR CHERN-SIMONS-SCHRÖDINGER SYSTEMS WITH A STEEP WELL POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1125-1140. |
[5] | Yongsheng JIANG, Na WEI, Yonghong WU. MULTIPLE SOLUTIONS FOR THE SCHRÖDINGER-POISSON EQUATION WITH A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(3): 703-711. |
[6] | Zhongyuan LIU. MULTIPLE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER EQUATIONS WITH SATURABLE NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(2): 493-504. |
[7] | Yaghoub JALILIAN. EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A COUPLED SYSTEM OF KIRCHHOFF TYPE EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1831-1848. |
[8] | Jae-Myoung KIM, Yun-Ho KIM, Jongrak LEE. RADIALLY SYMMETRIC SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING NONHOMOGENEOUS OPERATORS IN AN ORLICZ-SOBOLEV SPACE SETTING [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1679-1699. |
[9] | Jianhua CHEN, Xianjiu HUANG, Bitao CHENG, Xianhua TANG. EXISTENCE AND CONCENTRATION BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS IN $\mathbb{R}^N$ [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1495-1524. |
[10] | Xueliang DUAN, Gongming WEI, Haitao YANG. POSITIVE SOLUTIONS AND INFINITELY MANY SOLUTIONS FOR A WEAKLY COUPLED SYSTEM [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1585-1601. |
[11] | Yao DU, Chunlei TANG. GROUND STATE SOLUTIONS FOR A SCHRÖDINGER-POISSON SYSTEM WITH UNCONVENTIONAL POTENTIAL [J]. Acta mathematica scientia,Series B, 2020, 40(4): 934-944. |
[12] | Wentao HUANG, Li WANG. GROUND STATE SOLUTIONS OF NEHARI-POHOZAEV TYPE FOR A FRACTIONAL SCHRÖ DINGER-POISSON SYSTEM WITH CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2020, 40(4): 1064-1080. |
[13] | Lun GUO, Tingxi HU. MULTI-BUMP SOLUTIONS FOR NONLINEAR CHOQUARD EQUATION WITH POTENTIAL WELLS AND A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2020, 40(2): 316-340. |
[14] | Lixia WANG, Xiaoming WANG, Luyu ZHANG. GROUND STATE SOLUTIONS FOR THE CRITICAL KLEIN-GORDON-MAXWELL SYSTEM [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1451-1460. |
[15] | Huifang JIA, Gongbao LI. MULTIPLICITY AND CONCENTRATION BEHAVIOUR OF POSITIVE SOLUTIONS FOR SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE p-LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2018, 38(2): 391-418. |
|