Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1195-1210.doi: 10.1007/s10473-023-0312-3
Previous Articles Next Articles
Qingye Zhang1, Chungen Liu2,†
Received:
2021-09-29
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Chungen Liu, E-mail: liucg@nankai.edu.cn
About author:
Qingye Zhang, E-mail: zhangqy@jxnu.edu.cn
Supported by:
Qingye Zhang, Chungen Liu. HOMOCLINIC SOLUTIONS NEAR THE ORIGIN FOR A CLASS OF FIRST ORDER HAMILTONIAN SYSTEMS*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1195-1210.
[1] Arioli G, Szulkin A.Homoclinic solutions of Hamiltonian systems with symmetry. J Differential Equations, 1999, 158(2): 291-313 [2] Chen G.Homoclinic orbits of first order nonlinear Hamiltonian systems with asymptotically linear nonlinearities at infinity. Topol Methods Nonlinear Anal, 2016, 47(2): 499-510 [3] Chen G, Ma S.Homoclinic orbits of superlinear Hamiltonian systems. Proc Amer Math Soc, 2011, 139(11): 3973-3983 [4] Coti Zelati V, Ekeland I, Séré E.A variational approach to homoclinic orbits in Hamiltonian systems. Math Ann, 1990, 228(1): 133-160 [5] Ding Y.Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms. Commun Contemp Math, 2006, 8(4): 453-480 [6] Ding Y, Girardi M.Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Anal, 1999, 38(3): 391-415 [7] Ding Y, Jeanjean L.Homoclinic orbits for a nonperiodic Hamiltonian system. J Differential Equations, 2007, 237(2): 473-490 [8] Ding Y, Lee S.Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system. J Differential Equations, 2009, 246(7): 2829-2848 [9] Ding Y, Li S.Homoclinic orbits for first order Hamiltonian systems. J Math Anal Appl, 1995, 189(2): 585-601 [10] Ding Y, Willem M.Homoclinic orbits of a Hamiltonian system. Z Angew Math Phys, 1999, 50(5): 759-778 [11] Hofer H, Wysocki K.First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math Ann, 1990, 228(3): 483-503 [12] Séré E.Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math Z, 1992, 209(1): 27-42 [13] Shan Y.Homoclinic orbits for first order Hamiltonian systems with some twist conditions. Acta Math Sin, 2015, 31(11): 1725-1738 [14] Sun J, Chen H, Nieto J.Homoclinic orbits for a class of first-order nonperiodic asymptotically quadratic Hamiltonian systems with spectrum point zero. J Math Anal Appl, 2011, 378(1): 117-127 [15] Sun J, Chu J, Feng Z.Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete Contin Dyn Syst, 2013, 33(8): 3807-3824 [16] Szulkin A, Zou W.Homoclinic orbits for asymptotically linear Hamiltonian systems. J Funct Anal, 2001, 187(1): 25-41 [17] Tanaka K.Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits. J Differential Equations, 1991, 94(2): 315-339 [18] Timoumi M.On homoclinic orbits for a class of noncoercive superquadratic Hamiltonian systems. Nonlinear Anal, 2011, 74(17): 5892-5901 [19] Wang J, Xu J, Zhang F.Homoclinic orbits of superlinear Hamiltonian systems without Ambrosetti- Rabinowitz growth condition. Discrete Contin Dyn Syst, 2010, 27(3): 1241-1257 [20] Wang J, Xu J, Zhang F.Infinitely many homoclinic orbits for superlinear Hamiltonian systems. Topol Methods Nonlinear Anal, 2012, 39(1): 1-22 [21] Wang J, Zhang H, Xu J, Zhang F.Existence of infinitely many homoclinic orbits for nonperiodic superquadratic Hamiltonian systems. Nonlinear Anal, 2012, 75(13): 4873-4883 [22] Wang Q, Liu C.An index theory with applications to homoclinic orbits of Hamiltonian systems and Dirac equations. J Dynam Differential Equations, 2020, 32(3): 1177-1201 [23] Zhang J, Tang X, Zhang W.Homoclinic orbits of nonperiodic superquadratic Hamiltonian system. Taiwanese J Math, 2013, 17(6): 1855-1867 [24] Zhang W, Tang X, Zhang J.Homoclinlic solutions for the first-order Hamiltonian system with superquadratic nonlinearity. Taiwanese J Math, 2015, 19(3): 673-690 [25] Zhang W, Zhang J, Tang X.Ground state homoclinic orbits for first-order Hamiltonian system. Bull Malays Math Sci Soc, 2020, 43(2): 1163-1182 [26] Li C, Liu C.The existence of nontrivial solutions of Hamiltonian systems with Lagrangian boundary conditions. Acta Math Sci, 2009, 29B(2): 313-326 [27] Liu C, Zhang Q.Nontrivial solutions for asymptotically linear Hamiltonian systems with Lagrangian boundary conditions. Acta Math Sci, 2012, 32B(4): 1545-1558 [28] Liu C, Zhang X.Stability of subharmonic solutions of first-order Hamiltonian systems with anisotropic growth. Acta Math Sci, 2019, 39B(1): 111-118 [29] Zhang Q, Liu C.Homoclinic orbits for a class of first order nonperiodic Hamiltonian systems. Nonlinear Anal Real World Appl, 2018, 41: 34-52 [30] Triebel H. Interpolation Theory, Function Spaces, Differential Operators.Amsterdam: North-Holland, 1978 [31] Edmunds D, Evans W.Spectral Theory and Differential Operators. Oxford: Clarendon Press, 1987 [32] Liu Z, Wang Z-Q.On Clark's theorem and its applications to partially sublinear problems. Ann Inst H Poincaré Anal Non Linéaire, 2015, 32(5): 1015-1037 [33] Chang K C.Infinite Dimensional Morse Theory and Multiple Solution Problems. Boston: Birkhüauser, 1993 |
[1] | Yuanyuan Luo, Dongmei Gao, Jun Wang. EXISTENCE OF A GROUND STATE SOLUTION FOR THE CHOQUARD EQUATION WITH NONPERIODIC POTENTIALS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 303-323. |
[2] | Kuo-Chang CHEN. ON ACTION-MINIMIZING SOLUTIONS OF THE TWO-CENTER PROBLEM [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2450-2458. |
[3] | Jin DENG, Benniao LI. A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRÖDINGER SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1743-1764. |
[4] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[5] | Li WANG, Kun CHENG, Jixiu WANG. THE MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR THE KIRCHHOFF-CHOQUARD EQUATION WITH MAGNETIC FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1453-1484. |
[6] | Chunyu LEI, Jiafeng LIAO, Changmu CHU, Hongmin SUO. A NONSMOOTH THEORY FOR A LOGARITHMIC ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J]. Acta mathematica scientia,Series B, 2022, 42(2): 502-510. |
[7] | Nemat NYAMORADI, Abdolrahman RAZANI. EXISTENCE TO FRACTIONAL CRITICAL EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1321-1332. |
[8] | Antonella NASTASI, Stepan TERSIAN, Calogero VETRO. HOMOCLINIC SOLUTIONS OF NONLINEAR LAPLACIAN DIFFERENCE EQUATIONS WITHOUT AMBROSETTI-RABINOWITZ CONDITION [J]. Acta mathematica scientia,Series B, 2021, 41(3): 712-718. |
[9] | Mingwei WANG, Fei GUO. MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS WITH MIXED NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(2): 371-380. |
[10] | Zhongyuan LIU. MULTIPLE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER EQUATIONS WITH SATURABLE NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(2): 493-504. |
[11] | Jae-Myoung KIM, Yun-Ho KIM, Jongrak LEE. RADIALLY SYMMETRIC SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING NONHOMOGENEOUS OPERATORS IN AN ORLICZ-SOBOLEV SPACE SETTING [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1679-1699. |
[12] | Lun GUO, Tingxi HU. MULTI-BUMP SOLUTIONS FOR NONLINEAR CHOQUARD EQUATION WITH POTENTIAL WELLS AND A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2020, 40(2): 316-340. |
[13] | Amin ESFAHANI. THREE NONTRIVIAL SOLUTIONS FOR A NONLINEAR ANISOTROPIC NONLOCAL EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1296-1310. |
[14] | Huifang JIA, Gongbao LI. MULTIPLICITY AND CONCENTRATION BEHAVIOUR OF POSITIVE SOLUTIONS FOR SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE p-LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2018, 38(2): 391-418. |
[15] | Jiafeng LIAO, Yang PU, Chunlei TANG. MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF CONCAVE-CONVEX ELLIPTIC EQUATIONS WITH CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2018, 38(2): 497-518. |
|