Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (5): 1853-1876.doi: 10.1007/s10473-024-0512-5
Previous Articles Next Articles
Xu Zhang1,2, Hao zhai3, Fukun zhao3,†
Received:
2023-01-13
Revised:
2024-05-04
Online:
2024-10-25
Published:
2024-10-22
Contact:
†Fukun zhao , E-mail,: About author:
Xu Zhang, E-mail,: zhangxu0606@163.com; Hao ZHAI,E-mail,: 905358972@qq.com
Supported by:
CLC Number:
Xu Zhang, Hao zhai, Fukun zhao. A COMPACT EMBEDDING RESULT FOR NONLOCAL SOBOLEV SPACES AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR NONLOCAL SCHRÖDINGER EQUATIONS*[J].Acta mathematica scientia,Series B, 2024, 44(5): 1853-1876.
[1] Bartsch T. Critical point theory on partially ordered Hilbert spaces. J Funct Anal, 2001, 186(1): 117-152 [2] Bartsch T, Liu Z, Weth T. Sign changing solutions of superlinear Schrödinger equations. Comm Partial Differential Equations, 2004, 29(1): 25-42 [3] Bartsch T, Liu Z, Weth T. Nodal solutions of a $p$-Laplacian equation. Proc London Math Soc, 2005, 91(1): 129-152 [4] Bartsch T, Pankov A, Wang Z. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4): 549-569 [5] Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on $\mathbb R^N$. Comm Partial Differential Equations, 1995, 20(9/10): 1725-1741 [6] Bartsch T, Wang Z. On the existence of sign changing solutions for semilinear Dirichlet problems. Topol Methods Nonlinear Anal, 1996, 7(1): 115-131 [7] Bartsch T, Wang Z. Sign changing solutions of nonlinear Schrödinger equations. Topol Methods Nonlinear Anal, 1999, 13(2): 191-198 [8] Bartsch T, Weth T, Willem M. Partial symmetry of least energy nodal solutions to some variational problems. J Anal Math, 2005, 96: 1-18 [9] Berestycki H, Lions P L. Nonlinear scalar field equations. I. Existence of a ground state. Arch Ration Mech Anal, 1983, 82(4): 313-345 [10] Berestycki H, Lions P L. Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch Ration Mech Anal}, 1983, 82(4): 347-375 [11] Castro A, Cossio J, Neuberger J M. A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J Math, 1997, 27: 1041-1053 [12] Chang X, Wang Z. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J Differential Equations, 2014, 256(8): 2965-2992 [13] Dancer E N, Du Y. On sign-changing solutions of certain semilinear elliptic problems. Applicable Anal, 1995, 56: 193-206 [14] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5): 521-573 [15] Gu G, Yu Y, Zhao F. The least energy sign-changing solution for a nonlocal problem. J Math Phys, 2017, 58(5): 1-11 [16] Gu G, Zhang W, Zhao F. Infinitely many sign-changing solutions for a nonlocal problem. Ann Mat Pura Appl, 2018, 197(5): 1429-1444 [17] Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268(4-6): 298-305 [18] Li S, Wang Z. Ljusternik-Schnirelman theory in partially ordered Hilbert spaces. Tran Amer Math Soc, 2002, 354(1): 3207-3227 [19] Liu Z, Sun J. Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J Differential Equations, 2001, 172: 257-299 [20] Mawhin J, Willem M.Critical Point Theory and Hamiltonian Systems. Volume74 of Appl Math Sci (Ruse). New York: Springer-Verlag, 1989 [21] Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep, 2000, 339(1): 1-77 [22] Molica Bisci G, Radulescu V D, Servadei R.Variational Methods for Nonlocal Fractional Problems. Volume 162 of Encyclopedia of Mathematics and its Applications. With a foreword by Jean Mawhin. Cambridge: Cambridge University Press, 2016 [23] Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43(2): 270-291 [24] Servadei R, Valdinoci E. Mountain pass solutions for non-local elliptic operators. J Math Anal Appl, 2012, 389(2): 887-898 [25] Servadei R, Valdinoci E.Variational methods for non-local operators of elliptic type. Discrete Contin Dynam Systems, 2013, 33(5): 2105-2137 [26] Shuai W. Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J Differential Equations, 2015, 259(4): 1256-1274 [27] Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55(2): 149-162 [28] Struwe M. Variational Methods.Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Berlin: Springer-Verlag, 1990 [29] Wang Z, Zhou H. Radial sign-changing solution for fractional Schrödinger equation. Discrete Contin Dynam Systems, 2016, 36(1): 499-508 [30] Weth T. Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc Var Partial Differential Equations, 2006, 27(4): 421-437 [31] Willem M. Minimax Theorems.Volume~24 of Progress in Nonlinear Differential Equations and their Applications. Boston, MA: Birkhäuser, 1996 [32] Wu Y, Huang Y, Liu Z. Sign-changing solutions for Schrödinger equations with vanishing and sign-changing potentials. Acta Math Sci, 2014, 34B(3): 691-702 [33] Yang J, Peng S, Long L. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete Contin Dynam Systems, 2016, 36(2): 917-939 [34] Zou W, Schechter M.Critical Point Theory and Its Applications. New York: Springer, 2006 |
[1] | Bin Han, Ningan Lai, Andrei Tarfulea. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM [J]. Acta mathematica scientia,Series B, 2024, 44(3): 865-886. |
[2] | Yuxi Meng, Xiaoming He. MULTIPLICITY OF NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH DOUBLY CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2024, 44(3): 997-1019. |
[3] | Yinbin Deng, Wei Shuai, Xiaolong Yang. SIGN-CHANGING SOLUTIONS FOR THE NONLINEAR SCHRÖDINGER-POISSON SYSTEM WITH CRITICAL GROWTH* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2291-2308. |
[4] | Yansheng ZHONG, Yongqing LI. MULTIPLE POSITIVE SOLUTIONS TO A CLASS OF MODIFIED NONLINEAR SCHRÖDINGER EQUATION IN A HIGH DIMENSION∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1819-1840. |
[5] | Menghui WU, Chunlei TANG. THE EXISTENCE AND CONCENTRATION OF GROUND STATE SIGN-CHANGING SOLUTIONS FOR KIRCHHOFF-TYPE EQUATIONS WITH A STEEP POTENTIAL WELL∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1781-1799. |
[6] | Qingye Zhang, Chungen Liu. HOMOCLINIC SOLUTIONS NEAR THE ORIGIN FOR A CLASS OF FIRST ORDER HAMILTONIAN SYSTEMS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1195-1210. |
[7] | Yuanyuan Luo, Dongmei Gao, Jun Wang. EXISTENCE OF A GROUND STATE SOLUTION FOR THE CHOQUARD EQUATION WITH NONPERIODIC POTENTIALS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 303-323. |
[8] | Kuo-Chang CHEN. ON ACTION-MINIMIZING SOLUTIONS OF THE TWO-CENTER PROBLEM [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2450-2458. |
[9] | Jin DENG, Benniao LI. A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRÖDINGER SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1743-1764. |
[10] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[11] | Li WANG, Kun CHENG, Jixiu WANG. THE MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR THE KIRCHHOFF-CHOQUARD EQUATION WITH MAGNETIC FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1453-1484. |
[12] | Wenqing WANG, Anmin MAO. THE EXISTENCE AND NON-EXISTENCE OF SIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN [J]. Acta mathematica scientia,Series B, 2022, 42(2): 551-560. |
[13] | Chunyu LEI, Jiafeng LIAO, Changmu CHU, Hongmin SUO. A NONSMOOTH THEORY FOR A LOGARITHMIC ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J]. Acta mathematica scientia,Series B, 2022, 42(2): 502-510. |
[14] | Nemat NYAMORADI, Abdolrahman RAZANI. EXISTENCE TO FRACTIONAL CRITICAL EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1321-1332. |
[15] | Zhongyuan LIU. MULTIPLE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER EQUATIONS WITH SATURABLE NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(2): 493-504. |
|