[1] Castelli R. Topologically distinct collision-free periodic solutions for the N-center problem. Arch Ration Mech Anal, 2017, 223: 941-975 [2] Chen K -C. Variational aspects of the two-center problem. Arch Rational Mech Anal, 2022, 244: 225-252 [3] Chen K -C, Yu G. Syzygy sequences of the N-center problem. Ergodic Theory & Dynam System, 2018, 38(2): 566-582 [4] Chen K -C, Yu G. Variational construction for heteroclinic orbits of the N-center problem. Calc Var Partial Differ Equ, 2020, 59(1): Art 4 [5] Dullin H R, Montgomery R. Syzygies in the two center problem. Nonlinearity, 2016, 29: 1212-1237 [6] Euler L. De motu corporis ad duo centra virium fixa attracti. Opera Omnia: Series 2, 1760, 6 [7] Mathúna D Ó. Integrable Systems in Celestial Mechanics. Progress in M athematical Physics Vol 51. Springer-Birkhäuser, 2008 [8] Qiu S -L, Vamanamurthy M K. Sharp estimates for complete elliptic integrals. SIAM J Math Anal, 1996, 27: 823-834 [9] Soave N, Terracini S. Symbolic dynamics for the N-centre problem at negative energies. Discrete Contin Dyn Syst - Series A, 2012, 32: 3245-3301 [10] Whittaker E T. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies. fourth ed. Cambridge: Cambridge University Press, 1937 [11] Yu G. Periodic solutions of the planar N-center problem with topological constraints. Discrete & Contin Dynam Sys - Series A, 2016, 36: 5131-5162