[1] Apostolov V, Maschler G. Conformally Kähler Einstein-Maxwell geometry. J Eur Math Soc, 2019, 21(5): 1319-1360 [2] Apostolov V, Maschler G, Tønnesen-Friedman C. Weighted extremal Kähler metrics and the Einstein-Maxwell geometry of projective bundles. Commun Anal Geom, 2022, 30(4): 689-744 [3] Aubin T.Nonlinear Analysis on Manifolds, Monge-Ampère Equations. New York: Springer-Verlag, 1982 [4] Derdzinski A. Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compositio Math, 1983, 49: 405-433 [5] Futaki A, Mabuchi T. Bilinear forms and extremal Kähler vector fields associated with Kähler classes. Math Ann, 1995, 301: 199-210 [6] Futaki A, Mabuchi T, Sakane Y. Einstein-Kähler metrics with positive Ricci curvature. Adv Studies in Pure Math, 1990, 18-II: 11-83 [7] Futaki A, Ono H. Volume minimization and conformally Kähler, Einstein-Maxwell geometry. J Math Soc Japan, 2018, 70(4): 1493-1521 [8] Futaki A, Ono H. Conformally Einstein-Maxwell Kähler metrics and structure of the automorphism group. Math Z, 2019, 292(1/2): 571-589 [9] Futaki A, Ono H.On the existence problem of Einstein-Maxwell Kähler metrics// Chen J, Lu P, Lu Z, Zhang Z. Geometric Analysis. Cham: Birkhauser, 2020: 99-111 [10] Guan D, Chen X. Existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one. Asian J Math, 2000, 4: 817-830 [11] Guan Z. Maxwell-Einstein metrics on completions of certain  bundles. Acta Mathematica Scientia, 2023, 43B: 363-372 [12] Guan Z. Existence of extremal metrices on compact almost homogeneous manifolds with two ends. Transaction of Amer Math Soc, 1995, 347: 2255-2262 [13] Guan Z. Quasi-Einstein Metrics. International J of Math, 1999, 6(3): 371-379 [14] Guan D. On modified Mabuchi functional and Mabuchi Moduli space of Kähler metrics on Toric bundles. Math Res Letters, 1995, 6: 547-555 [15] Guan D. Existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one--III. Intern J of Math, 2003, 14: 259-287 [16] Guan D.Quasi-Einstein metrics and evolution of metrics in a Kähler class. In preparation [17] Hwang A, Simanca S. Distinguished Kähler metrics on Hirzebruch surfaces. Trans Amer Math Soc, 1995, 347(3): 1013-1021 [18] Hwang A, Simanca S. Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics. Math Ann, 1997, 309(1): 97-106 [19] Hwang S, Yun G. Weakly Einstein critical point equation. Bull Korean Math Soc, 2016, 53: 1087-1094 [20] Huckleberry A, Snow D. Almost-homogeneous Kähler manifolds with hypersurface orbits. Osaka J Math, 1982, 19: 763-786 [21] Kobayashi S.Differential Geometry of Complex Vector Bundles. Princeton: Princeton University Press, 1987 [22] Koiso N.On Rotationally Symmetric Hamilton's Equations for Kähler-Einstein Metrics. Max-Planck-Institut Preprint Series 87-16, 1987 [23] Koiso N. On Rotationally Symmetric Hamilton's Equations for Kähler-Einstein Metrics. Adv Studies in Pure Math, 1990, 18-I: 327-337 [24] Koiso N, Sakane Y. Non-homogeneous Kähler-Einstein metrics on compact complex manifolds. Lecture Notes in Math, 1986, 1201: 165-179 [25] Koiso N, Sakane Y. Non-homogeneous Kähler-Einstein metrics on compact complex manifolds II. Osaka J Math, 1988, 25: 933-959 [26] Lahdili A. Automorphisms and deformations of conformally Kähler, Einstein-Maxwell metrics. J Geom Anal, 2019, 29: 542-568 [27] Lahdili A. Kähler metrics with constant weighted scalar curvature and weighted K-stability. Proc Lond Math Soc, 2019, 119: 1065-1114 [28] LeBrun C. The Einstein-Maxwell equations, Kähler metrics,Hermitian geometry. J Geom Phys, 2015, 91: 163-171 [29] LeBrun C. The Einstein-Maxwell equations and conformally Kähler geometry. Comm Math Phys, 2016, 344(2): 621-653 [30] Mabuchi T. Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J Math, 1987, 24: 705-737 [31] Sakane Y. Examples of compact Kähler-Einstein manifolds with positive Ricci curvatures. Osaka J Math, 1986, 23: 585-617 |