Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (2): 327-337.doi: 10.1007/s10473-025-0203-x
Previous Articles Next Articles
Di Wu
Received:
2023-12-29
Online:
2025-03-25
Published:
2025-05-08
About author:
Di Wu, E-mail: 202011104010014@stu.hubu.edu.cn
CLC Number:
Di Wu.
[1] Aleksandrov A. Existence and uniqueness of a convex surface with a given integral curvature. Doklady Acad Nauk Kasah SSSR, 1942, 36: 131-134 [2] Bianchi G, Böröczky K, Colesanti A. The Orlicz version of the ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() [3] Böröczky K.The logarithmic Minkowski conjecture and the ![]() ![]() [4] Böröczky K, Fodor F. The ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() [5] Böröczky K, Henk M, Pollehn H. Subspace concentration of dual curvature measures of symmetric convex bodies. J Differential Geom, 2018, 109: 411-429 [6] Böröczky K, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26: 831-852 [7] Chen C, Huang Y, Zhao Y. Smooth solutions to the ![]() ![]() [8] Chen H, Chen S, Li Q. Variations of a class of MA type functionals and their applications. Anal & PDE, 2021, 14(3): 689-716 [9] Chen L, Liu Y, Lu J, Xiang N. Existence of smooth even solutions to the dual Orlicz-Minkowski problem. J Geom Anal, 2022, 32(2): 1-25 [10] Chen L, Tu Q, Wu D, Xiang N. Anisotropic Gauss curvature flows and their associated dual Orlicz-Minkowski problems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152(1): 148-162 [11] Chen L, Tu Q, Wu D, Xiang N. ![]() ![]() ![]() ![]() ![]() ![]() [12] Chen S, Li Q, Zhu G. The logarithmic Minkowski problem for non-symmetric measures. Trans Amer Math Soc, 2019, 371: 2623-2641 [13] Chou K, Wang X. The ![]() ![]() [14] Ding S, Li G.A class of anisotropic inverse Gauss curvature flows and dual Orlicz Minkowski type problem. arXiv: 2209.04601 [15] Gardner R, Hug D, Weil W, et al. General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I. Calc Var Partial Differential Equations, 2019, 58: Art 12 [16] Gardner R, Hug D, Xing S, Ye D. General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II. Calc Var Partial Differential Equations, 2020, 59: Art 15 [17] Guan P, Li Y. ![]() ![]() ![]() ![]() [18] Guang Q, Li Q, Wang X.The ![]() ![]() [19] Haberl C, Lutwak E,Yang D, Zhang G. The even Orlicz Minkowski problem. Adv Math, 2010, 224: 2485-2510 [20] He Y, Li Q, Wang X. Multiple solutions of the ![]() ![]() [21] Henk M, Pollehn H. Necessary subspace concentration conditions for the even dual Minkowski problem. Adv Math, 2018, 323: 114-141 [22] Huang Y, Jiang Y. Variational characterization for the planar dual Minkowski problem. J Funct Anal, 2019, 277: 2209-2236 [23] Huang Y, Lutwak E, Yang D, Zhang G. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math, 2016, 216: 325-388 [24] Huang Y, Lutwak E, Yang D, Zhang G. The ![]() ![]() ![]() ![]() [25] Huang Y, Zhao Y. On the ![]() ![]() [26] Hug D, Lutwak E, Yang D, Zhang G. On the ![]() ![]() [27] Jian H, Lu J. Existence of solutions to the Orlicz-Minkowski problem. Adv Math, 2019, 344: 262-288 [28] Jian H, Lu J, Wang X. A priori estimates and existence of solutions to the prescribed centroaffine curvature problem. J Funct Anal, 2018, 274: 826-862 [29] Jian H, Lu J, Zhu G. Mirror symmetric solutions to the centro-affine Minkowski problem. Calc Var Partial Differential Equations, 2016, 55: Art 41 [30] Li Q, Liu J, Lu J. Non-uniqueness of solutions to the ![]() ![]() [31] Li Q, Sheng W, Wang X. Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J Eur Math Soc, 2020, 22: 893-923 [32] Liu Y, Lu J. A flow method for the dual Orlicz-Minkowski problem. Trans Amer Math Soc, 2020: 373: 5833-5853 [33] Lu J. Nonexistence of maximizers for the functional of the centroaffine Minkowski problem. Sci China Math, 2018, 61: 511-516 [34] Lu J. A remark on rotationally symmetric solutions to the centroaffine Minkowski problem. J Differential Equations, 2019, 266: 4394-4431 [35] Lu J, Wang X. Rotationally symmetric solutions to the ![]() ![]() [36] Lutwak E. The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38: 131-150 [37] Lutwak E, Yang D, Zhang G. On the ![]() ![]() [38] Lutwak E, Yang D, Zhang G. ![]() ![]() [39] Minkowski H.Allgemeine Lehrsätze über die konvexen Polyeder// Ausgewählte Arbeiten zur Zahlentheorie und zur Geometrie. Leipzig: Teubner, 1897: 198-219 [40] Minkowski H. Volumen and Oberfläche. Math Ann, 1903: 57: 447-495 [41] Oliker V.Existence and uniqueness of convex hypersurfaces with prescribed Gaussian curvature in spaces of constant curvature// Sem Inst Mate Appl ``Giovanni Sansone", Univ Studi Firenze, 1983 [42] Pogorelov A.Extrinsic Geometry of Convex Surfaces. Providence, RI: Amer Math Soc, 1973 [43] Schneider R.Convex Bodies: the Brunn-Minkowski theory. Cambridge: Cambridge University Press, 2013 [44] Sheng W, Yi C.An anisotropic shrinking flow and ![]() ![]() [45] Stancu A. The discrete planar ![]() ![]() [46] Xie F. The Orlicz Minkowski problem for general measures. Proc Amer Math Soc, 2022, 150(10): 4433-4445 [47] Xing S, Ye D. The general dual Orlicz-Minkowski problem. Indiana Univ Math J, 2020, 69: 621-655 [48] Zhao Y. The dual Minkowski problem for negative indices. Calc Var Partial Differential Equations, 2017, 56: Art 18 [49] Zhao Y. Existence of solutions to the even dual Minkowski problem. J Differential Geom, 2018, 110: 543-572 [50] Zhu B, Xing S, Ye D. The dual Orlicz-Minkowski problem. J Geom Anal, 2018, 28: 3829-3855 [51] Zhu G. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262: 909-931 [52] Zhu G. The centro-affine Minkowski problem for polytopes. J Differential Geom, 2015, 101: 159-174 |
[1] | Qin WANG, Kyungwoo SONG. SHOCK DIFFRACTION PROBLEM BY CONVEX CORNERED WEDGES FOR ISOTHERMAL GAS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1130-1140. |
[2] | Quanqing LI, Wenbo WANG, Kaimin TENG, Xian WU. GROUND STATES FOR FRACTIONAL SCHRÖDINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2020, 40(1): 59-74. |
[3] | Leszek GASINSKI, Nikolaos S. PAPAGEORGIOU. POSITIVE SOLUTIONS FOR PARAMETRIC EQUIDIFFUSIVE p-LAPLACIAN EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 610-618. |
[4] | Nemat NYAMORADI, Tsing-San HSU. EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS INVOLVING m CRITICAL HARDY-SOBOLEV EXPONENTS AND m SIGN-CHANGING WEIGHT FUNCTION [J]. Acta mathematica scientia,Series B, 2014, 34(2): 483-500. |
[5] | SONG Qiao-Zhen, WANG Li-He, LI Dong-Sheng. HÖLDER ESTIMATES FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1202-1218. |
[6] | CHEN Xiao-Li, YANG Jian-Fu. REGULARITY AND SYMMETRY OF SOLUTIONS OF AN INTEGRAL SYSTEM [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1759-1780. |
[7] | LI Ke, WEI Hong-Jun. INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1899-1910. |
[8] | Veli Shakhmurov. ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(1): 49-67. |
[9] | CAO Dao-Min, YAN Shu-Sen. INFINITELY MANY SOLUTIONS FOR AN ELLIPTIC PROBLEM INVOLVING CRITICAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2010, 30(6): 2017-2032. |
[10] | Helge Holden, Kenneth H. Karlsen, Darko Mitrovic, Evgueni Yu. Panov. STRONG COMPACTNESS OF APPROXIMATE SOLUTIONS TO DEGENERATE ELLIPTIC-HYPERBOLIC EQUATIONS WITH DISCONTINUOUS FLUX FUNCTION [J]. Acta mathematica scientia,Series B, 2009, 29(6): 1573-1612. |
[11] | Yao Yangxin; Wang Rongxin; Shen Yaotian. NONTRIVIAL SOLUTION FOR A CLASS OF SEMILINEAR BIHARMONIC EQUATION INVOLVING CRITICAL EXPONENTS [J]. Acta mathematica scientia,Series B, 2007, 27(3): 509-514. |
[12] | Wen Guochun. SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR DEGENERATE ELLIPTIC#br# EQUATIONS OF SECOND ORDER [J]. Acta mathematica scientia,Series B, 2007, 27(3): 663-672. |
[13] | Zhang Zhengjie; Tassilo Kupper; Hu Ailian; Xia Hongqiang. EXISTENCE OF A NONTRIVIAL SOLUTION FOR CHOQUARD'S EQUATION [J]. Acta mathematica scientia,Series B, 2006, 26(3): 460-468. |
[14] | DIAO Dun-Ning, CENG Xiao-Meng. THE FIRST BOUNDARY VALUE PROBLEM FOR A CLASS OF QUASILINEAR DEGENERATE ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2005, 25(4): 577-586. |
[15] |
ZHANG Zheng-Jie, LEI Wei-Meng.
BIFURCATION RESULTS FOR A SEMILINEAR SCHR¨|ODINGER EQUATION WITH INDEFINITE LINEAR PART 1 [J]. Acta mathematica scientia,Series B, 2004, 24(3): 493-498. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 26
|
|
|||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||
Discussed |
|