[1] Adams A, Fournier J F. Sobolev Spaces.New York: Academic Press, 2003 [2] Alves C O, Silva A R D. Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space . J Math Phys, 2016, 57: 143-162 [3] Alves C O, Shen L J. Critical Schrödinger equations with Stein-Weiss convolution parts in R2. J Diff Equations, 2023, 344: 352-404 [4] Alves C O,Souto M A S. Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J Diff Equations, 2013, 254: 1977-1991 [5] Alves C O, Carvalho M L M. A Lions type result for a large class of Orlicz-Sobolev space and applications. arXiv: 2005.00303 [6] Alves C O, Rădulescu V, Tavares L S. Generalized Choquard equations driven by nonhomogeneous operators. Mediterr J Math, 2019, 16: Art 20 [7] Bonanno G, Bisci G M, Radulescu V. Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces. Nonlinear Anal, 2012, 75: 4441-4456 [8] Bonanno G, Bisci G M, Radulescu V. Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Monatshefte für Mathematik, 2012, 165: 305-318 [9] Berestycki H, Lions P L. Nonlinear scalar field equations, I: Existence of a ground state. Arch Ration Mech Anal, 1983, 82: 313-346 [10] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011 [11] Clément PH, Garcia-Huidobro M, Manásevich R, Schmitt K. Mountain pass type solutions for quasilinear elliptic equations. Calc Var PDE, 2020, 11: 33-62 [12] Cerný R. Generalized Moser-Trudinger inequality for unbounded domains and its application. Nonlinear Diff Equations Appl, 2012, 19: 575-608 [13] Chen S, Yuan S. Ground state solutions for a class of Choquard equations with potential vanishing at infinity. J Math Anal Appl, 2018, 463: 880-894 [14] Da Silva E D, Carvalho M L M, Silva K, Gonalves J V A. Quasilinear elliptic problems on non-reflexive Orlicz-Sobolev spaces. Topol Methods Nonlinear Anal, 2019, 54: 587-612 [15] DiBenedetto E. C1,γ local regularity of weak solutions of degenerate elliptic equations . Nonlinear Anal, 1985, 7: 827-850 [16] Du L, Gao F, Yang M. On elliptic equations with Stein-Weiss type convolution parts. Mathematische Zeitschrift, 2022, 301: 2185-2225 [17] da Silva L, Souto M. Existence of positive solution for a class of quasilinear Schrödinger equations with potential vanishing at infinity on nonreflexive Orlicz-Sobolev spaces. Topol Methods Nonlinear Anal, 2024, 64: 201-241 [18] Donaldson T. Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J Diff Equations, 1971, 10: 507-528 [19] Fukagai N, Ito M, Narukawa K. Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on RN. Funskcial Ekvac,2006, 49: 235-267 [20] Figueiredo G M. Existence and multiplicity of solutions for a class of p&q elliptic problems with critical exponent. Math Nachr, 2013, 286: 1129-1141 [21] Fuchs M, Li G. Variational inequalities for energy functionals with nonstandard growth conditions . Abstr Appl Anal, 1998, 3: 405-412 [22] Fukagai N, Narukawa K. On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann Mat Pura Appl, 2007, 186: 539-564 [23] Fuchs M, Osmolovski V. Variational integrals on Orlicz Sobolev spaces . Z Anal Anwend, 1998, 17: 393-415 [24] Gossez J P. Nonlineare elliptic boundary value problems for equations with rapidly(or slowly) increasing coefficients. Trans Amer Math Soc1974, 190: 753-758 [25] Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud Appl Math, 1977, 57: 93-105 [26] Lieberman G M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Commun Partial Diff Equations, 1991, 16: 311-361 [27] Lieb E, Loss M.Analysis. Providence: Amer Math Soc, New York: 2001 [28] Ladyzhenskaya O A, Uraltseva N N.Linear and Quasilinear Elliptic Equations. New York: Acad Press, 1968 [29] Lions P L. The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063-1072 [30] Le V K, Schmitt K. Quasilinear elliptic equations and inequalities with rapidly growing coefficients. J London Math Soc, 2000, 62: 852-872 [31] Montreano D, Montreano D, Papageorgiou N S.Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems . New York: Springer, 2014 [32] Menzala G P. On regular solutions of a nonlinear equation of Choquard's type. Proc Roy Soc Edinburgh Sect, 1980, 86: 291-301 [33] Moroz V, Van Schaftingen J. A guide to the Choquard equation. J Fixed Point Theory Appl, 2017, 19: 773-813 [34] Mustonen V, Tienari M. An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces . Proc Royal Soc Edinburgh, 1999, 129A: 153-163 [35] Rao M N, Ren Z D.Theory of Orlicz Spaces. New York: Marcel Dekker, 1985 [36] Stein E, Weiss G. Fractional integrals on n-dimensional Euclidean space . J Math Mech, 1958, 7: 503-514 [37] Tienari M.A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces. Annales Academiae Scientiarum Fennicae Series A I. Mathematica. Dissertationes 97. Helsinki: Acad Sci Fenn 68, 1994 [38] Trudinger N S. On Harnack type inequalities and their applicatoin to quasilinear elliptic equations. Communication on Pure and Applied Mathematics, 1967, XX: 721-747 [39] Willem M. Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications, Boston: Birkhäuser, 1996 [40] Zhang Y P, Tang X H, Rădulescu V D. Anisotropic Choquard problems with Stein-Weiss potential: nonlinear patterns and stationary waves. Paris C R Math Acad Sci,2021, 359: 959-968 |