|
GLOBAL WEAK SOLUTIONS FOR AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH $p$-LAPLACIAN DIFFUSION AND LOGISTIC SOURCE
Xiaoshan Wang, Zhongqian Wang, Zhe Jia
Acta mathematica scientia,Series B
2024, 44 (3):
909-924.
DOI: 10.1007/s10473-024-0308-7
This paper is concerned with the following attraction-repulsion chemotaxis system with $p$-Laplacian diffusion and logistic source: $$\left\{\begin{array}{ll}u_{t}=\nabla\cdot(|\nabla u|^{p-2}\nabla u)-\chi \nabla\cdot(u \nabla v)+\xi \nabla\cdot(u \nabla w)+f(u),\;\;\;x\in \Omega,\;t>0,\\v_{t}=\triangle v-\beta v+\alpha u^{k_{1}},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega,\;t>0,\\0=\triangle w-\delta w+\gamma u^{k_{2}},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega,\;t>0,\\u(x,0)=u_{0}(x),\;\;v(x,0)=v_{0}(x),\;\;w(x,0)=w_{0}(x), \;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega.\end{array}\right.$$ The system here is under a homogenous Neumann boundary condition in a bounded domain $ \Omega \subset \mathbb{R}^{n}(n\geq2) $, with $ \chi, \xi, \alpha,\beta,\gamma,\delta, k_{1}, k_{2} >0, p\geq 2$. In addition, the function $f$ is smooth and satisfies that $f(s)\leq\kappa-\mu s^{l}$ for all $s\geq0$, with $\kappa\in \mathbb{R}, \mu>0, l>1$. It is shown that (i) if $l>\max\{ 2k_{1}, \frac{2k_{1}n}{2+n}+\frac{1}{p-1}\}$, then system possesses a global bounded weak solution and (ii) if $k_{2}>\max\{2k_{1}-1, \frac{2k_{1}n}{2+n}+\frac{2-p}{p-1}\}$ with $l>2$, then system possesses a global bounded weak solution.
Reference |
Related Articles |
Metrics
|
|