数学物理学报(B辑)
主办 中国科学院武汉物理与数学研究所
编辑  《数学物理学报》编辑委员会
   地址: 湖北武汉武昌小洪山西30号
       中国科学院武汉物理与数学研究所
   电话: 027-87199087(英文版)
       027-87199206(中、英文版)
   E-mail: actams@wipm.ac.cn
   Http://actams.wipm.ac.cn
ISSN 0252-9602
CN  42-1227/O
2020年, 第40卷, 第5期 刊出日期:2020-10-25 上一期   
本期栏目: 论文 
论文
ON BOUNDEDNESS PROPERTY OF SINGULAR INTEGRAL OPERATORS ASSOCIATED TO A SCHRÖDINGER OPERATOR IN A GENERALIZED MORREY SPACE AND APPLICATIONS
Xuan Truong LE, Thanh Nhan NGUYEN, Ngoc Trong NGUYEN
数学物理学报(英文版). 2020 (5):  1171-1184.  DOI: 10.1007/s10473-020-0501-2
摘要 ( 15 )   RICH HTML PDF   收藏
In this paper, we provide the boundedness property of the Riesz transforms associated to the Schrödinger operator ?=-△+V in a new weighted Morrey space which is the generalized version of many previous Morrey type spaces. The additional potential V considered in this paper is a non-negative function satisfying the suitable reverse Hölder's inequality. Our results are new and general in many cases of problems. As an application of the boundedness property of these singular integral operators, we obtain some regularity results of solutions to Schrödinger equations in the new Morrey space.
参考文献 | 相关文章 | 计量指标
GLOBAL WEAK SOLUTIONS FOR A NONLINEAR HYPERBOLIC SYSTEM
孙庆有, 陆云光, Christian KLINGENBERG
数学物理学报(英文版). 2020 (5):  1185-1194.  DOI: 10.1007/s10473-020-0502-1
摘要 ( 13 )   RICH HTML PDF   收藏
In this paper, we study the global existence of weak solutions for the Cauchy problem of the nonlinear hyperbolic system of three equations (1.1) with bounded initial data (1.2). When we fix the third variable $s$, the system about the variables $\rho$ and $u$ is the classical isentropic gas dynamics in Eulerian coordinates with the pressure function $P( \rho,s)= {\rm e}^{s} {\rm e}^{-\frac{1}{\rho }}$, which, in general, does not form a bounded invariant region. We introduce a variant of the viscosity argument, and construct the approximate solutions of (1.1) and (1.2) by adding the artificial viscosity to the Riemann invariants system (2.1). When the amplitude of the first two Riemann invariants $(w_{1}(x,0),w_{2}(x,0))$ of system (1.1) is small, $(w_{1}(x,0),w_{2}(x,0))$ are nondecreasing and the third Riemann invariant $s(x,0)$ is of the bounded total variation, we obtained the necessary estimates and the pointwise convergence of the viscosity solutions by the compensated compactness theory. This is an extension of the results in [1].
参考文献 | 相关文章 | 计量指标
ASYMPTOTIC STABILITY OF A VISCOUS CONTACT WAVE FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS FOR A REACTING MIXTURE
彭利双
数学物理学报(英文版). 2020 (5):  1195-1214.  DOI: 10.1007/s10473-020-0503-0
We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture. When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave, it is shown that the viscous contact wave which corresponds to the contact discontinuity is asymptotically stable, provided the strength of contact discontinuity and the initial perturbation are suitably small. We apply the approach introduced in Huang, Li and Matsumura (2010) [1] and the elementary L2-energy methods.
参考文献 | 相关文章 | 计量指标
BOUNDEDNESS OF VARIATION OPERATORS ASSOCIATED WITH THE HEAT SEMIGROUP GENERATED BY HIGH ORDER SCHRÖDINGER TYPE OPERATORS
刘素英, 张超
数学物理学报(英文版). 2020 (5):  1215-1228.  DOI: 10.1007/s10473-020-0504-z
In this article, we derive the $L^p$-boundedness of the variation operators associated with the heat semigroup which is generated by the high order Schrödinger type operator $(-\Delta)^2+V^2$ in $\mathbb R^n(n\ge 5)$ with $V$ being a nonnegative potential satisfying the reverse Hölder inequality. Furthermore, we prove the boundedness of the variation operators on associated Morrey spaces. In the proof of the main results, we always make use of the variation inequalities associated with the heat semigroup generated by the biharmonic operator $(-\Delta)^2.$
参考文献 | 相关文章 | 计量指标
THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES
蒋伟峰, 王振
数学物理学报(英文版). 2020 (5):  1229-1239.  DOI: 10.1007/s10473-020-0505-y
In this article, by the mean-integral of the conserved quantity, we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region. Moreover, we obtain a necessary condition on the state equations for the existence of an invariant region for a non-isentropic process. Finally, we provide a mathematical example showing that with a special state equation, a bounded invariant region for the non-isentropic process may exist.
参考文献 | 相关文章 | 计量指标
THE DAVIES METHOD FOR HEAT KERNEL UPPER BOUNDS OF NON-LOCAL DIRICHLET FORMS ON ULTRA-METRIC SPACES
高晋
数学物理学报(英文版). 2020 (5):  1240-1248.  DOI: 10.1007/s10473-020-0506-x
We apply the Davies method to give a quick proof for the upper estimate of the heat kernel for the non-local Dirichlet form on the ultra-metric space. The key observation is that the heat kernel of the truncated Dirichlet form vanishes when two spatial points are separated by any ball of a radius larger than the truncated range. This new phenomenon arises from the ultra-metric property of the space.
参考文献 | 相关文章 | 计量指标
DYNAMICS ON NONCOMMUTATIVE ORLICZ SPACES
L. E. LABUSCHAGNE, W. A. MAJEWSKI
数学物理学报(英文版). 2020 (5):  1249-1270.  DOI: 10.1007/s10473-020-0507-9
Quantum dynamical maps are defined and studied for quantum statistical physics based on Orlicz spaces. This complements earlier work [26] where we made a strong case for the assertion that statistical physics of regular systems should properly be based on the pair of Orlicz spaces $\langle L^{\cosh - 1}, L\log(L+1)\rangle$, since this framework gives a better description of regular observables, and also allows for a well-defined entropy function. In the present paper we "complete" the picture by addressing the issue of the dynamics of such a system, as described by a Markov semigroup corresponding to some Dirichlet form (see [4, 13, 14]). Specifically, we show that even in the most general non-commutative contexts, completely positive Markov maps satisfying a natural Detailed Balance condition canonically admit an action on a large class of quantum Orlicz spaces. This is achieved by the development of a new interpolation strategy for extending the action of such maps to the appropriate intermediate spaces of the pair $\langle L^\infty,L^1\rangle$. As a consequence, we obtain that completely positive quantum Markov dynamics naturally extends to the context proposed in [26].
参考文献 | 相关文章 | 计量指标
THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS
崔艳艳, 王朝君, 刘浩
数学物理学报(英文版). 2020 (5):  1271-1288.  DOI: 10.1007/s10473-020-0508-8
In this article, we extend the well-known Roper-Suffridge operator on $B^{n+1}$ and bounded complete Reinhardt domains in $\mathbb{C}^{n+1}$, then we investigate the properties of the generalized operators. Applying the Loewner theory, we obtain the mappings constructed by the generalized operators that have parametric representation on $B^{n+1}$. In addition, by using the geometric characteristics and the parametric representation of subclasses of spirallike mappings, we conclude that the extended operators preserve the geometric properties of several subclasses of spirallike mappings on $B^{n+1}$ and bounded complete Reinhardt domains in $\mathbb{C}^{n+1}$. The conclusions provide new approaches to construct mappings with special geometric properties in $\mathbb{C}^{n+1}$.
参考文献 | 相关文章 | 计量指标
ON SINGULAR EQUATIONS INVOLVING FRACTIONAL LAPLACIAN
Ahmed YOUSSFI, Ghoulam OULD MOHAMED MAHMOUD
数学物理学报(英文版). 2020 (5):  1289-1315.  DOI: 10.1007/s10473-020-0509-7
We study the existence and the regularity of solutions for a class of nonlocal equations involving the fractional Laplacian operator with singular nonlinearity and Radon measure data.
参考文献 | 相关文章 | 计量指标
LOCAL EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO THE TWO DIMENSIONAL NONHOMOGENEOUS INCOMPRESSIBLE PRIMITIVE EQUATIONS
酒全森, 王凤超
数学物理学报(英文版). 2020 (5):  1316-1334.  DOI: 10.1007/s10473-020-0510-1
In this article, we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions. The initial vacuum is allowed.
参考文献 | 相关文章 | 计量指标
GLOBAL EXISTENCE FOR THE RELATIVISTIC ENSKOG EQUATIONS
黄健骏, 姜正禄
数学物理学报(英文版). 2020 (5):  1335-1351.  DOI: 10.1007/s10473-020-0511-0
This article extends the results of Arkeryd and Cercignani [6]. It is shown that the Cauchy problem for the relativistic Enskog equation in a periodic box has a global mild solution if the mass, energy and entropy of the initial data are finite. It is also found that the solutions of the relativistic Enskog equation weakly converge to the solutions of the relativistic Boltzmann equation in L1 if the diameter of the relativistic particle tends to zero.
参考文献 | 相关文章 | 计量指标
NONLINEAR STABILITY OF RAREFACTION WAVES FOR A COMPRESSIBLE MICROPOLAR FLUID MODEL WITH ZERO HEAT CONDUCTIVITY
金晶, Noor REHMAN, 江芹
数学物理学报(英文版). 2020 (5):  1352-1390.  DOI: 10.1007/s10473-020-0512-z
In 2018, Duan [1] studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid model. Due to the absence of heat conductivity, it is quite difficult to close the energy estimates. He considered the far-field states of the initial data to be constants; that is, $\lim\limits_{x\rightarrow \pm\infty}(v_0,u_0,\omega_0,\theta_0)(x)=(1,0,0,1)$. He proved that the solution tends asymptotically to those constants. In this article, under the same hypothesis that the heat conductivity is zero, we consider the far-field states of the initial data to be different constants - that is, $\lim\limits_{x\rightarrow \pm\infty}(v_0,u_0,\omega_0,\theta_0)(x)=(v_\pm, u_\pm, 0, \theta_\pm)$-and we prove that if both the initial perturbation and the strength of the rarefaction waves are assumed to be suitably small, the Cauchy problem admits a unique global solution that tends time - asymptotically toward the combination of two rarefaction waves from different families.
参考文献 | 相关文章 | 计量指标
THE PERTURBATION PROBLEM OF AN ELLIPTIC SYSTEM WITH SOBOLEV CRITICAL GROWTH
李奇
数学物理学报(英文版). 2020 (5):  1391-1404.  DOI: 10.1007/s10473-020-0513-y
In this paper, we study the following perturbation problem with Sobolev critical exponent: \begin{equation}\label{eqs0.1} \left\{ \begin{array}{ll} -\Delta u=(1+\varepsilon K(x)){{u}^{{{2}^{*}}-1}}+\frac{\alpha }{{{2}^{*}}}{{u}^{\alpha -1}}{{v}^{\beta }}+\varepsilon h(x){{u}^{p}},\ \ &x\in \mathbb{R}^N,\\[2.5mm] -\Delta v=(1+\varepsilon Q(x)){{v}^{{{2}^{*}}-1}}+\frac{\beta }{{{2}^{*}}}{{u}^{\alpha }}{{v}^{\beta -1}}+\varepsilon l(x){{v}^{q}},\ \ &x\in \mathbb{R}^N,\\[2mm] u> 0,\,v> 0,\ \ &x\in \mathbb{R}^N, \end{array} \right. \end{equation} where $0 < p,\,q < 1$, $\alpha +\beta ={{2}^{*}}:=\frac{2N}{N-2}$, $\alpha,\,\beta\geq 2$ and $N=3, 4$. Using a perturbation argument and a finite dimensional reduction method, we get the existence of positive solutions to problem (0.1) and the asymptotic property of the solutions.
参考文献 | 相关文章 | 计量指标
A BLOCK-CENTERED UPWIND APPROXIMATION OF THE SEMICONDUCTOR DEVICE PROBLEM ON A DYNAMICALLY CHANGING MESH
袁益让, 李长峰, 宋怀玲
数学物理学报(英文版). 2020 (5):  1405-1428.  DOI: 10.1007/s10473-020-0514-x
The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initial-boundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously. The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.
参考文献 | 相关文章 | 计量指标
PERIODIC POINTS AND NORMALITY CONCERNING MEROMORPHIC FUNCTIONS WITH MULTIPLICITY
邓炳茂, 方明亮, 王跃飞
数学物理学报(英文版). 2020 (5):  1429-1444.  DOI: 10.1007/s10473-020-0515-9
In this article, two results concerning the periodic points and normality of meromorphic functions are obtained: (i) the exact lower bound for the numbers of periodic points of rational functions with multiple fixed points and zeros is proven by letting $R(z)$ be a non-polynomial rational function, and if all zeros and poles of $R(z)-z$ are multiple, then $R^k(z)$ has at least $k+1$ fixed points in the complex plane for each integer $k\ge 2$; (ii) a complete solution to the problem of normality of meromorphic functions with periodic points is given by letting $\mathcal{F}$ be a family of meromorphic functions in a domain $D$, and letting $k\ge 2$ be a positive integer. If, for each $f\in \mathcal{F}$, all zeros and poles of $f(z)-z$ are multiple, and its iteration $f^k$ has at most $k$ distinct fixed points in $D$, then $\mathcal{F}$ is normal in $D$. Examples show that all of the conditions are the best possible.
参考文献 | 相关文章 | 计量指标
LIPSCHITZ TYPE CHARACTERIZATIONS FOR BERGMAN-ORLICZ SPACES AND THEIR APPLICATIONS
马茹梦, 徐景实
数学物理学报(英文版). 2020 (5):  1445-1458.  DOI: 10.1007/s10473-020-0516-8
We give characterizations for Bergman-Orlicz spaces with standard weights via a Lipschitz type condition in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As an application, we obtain the boundeness of the symmetric lifting operator from Bergman-Orlicz spaces on the unit disk into Bergman-Orlicz spaces on the bidisk.
参考文献 | 相关文章 | 计量指标
INVASION TRAVELING WAVES FOR A DISCRETE DIFFUSIVE RATIO-DEPENDENT PREDATOR-PREY MODEL
苏涛, 张国宝
数学物理学报(英文版). 2020 (5):  1459-1476.  DOI: 10.1007/s10473-020-0517-7
This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder's fixed point theorem with the help of suitable upper and lower solutions, we prove that there exists a positive constant $c^{*}$ such that when $c>c^{*}$, the discrete diffusive predator-prey system admits an invasion traveling wave. The existence of an invasion traveling wave with $c=c^{*}$ is also established by a limiting argument and a delicate analysis of the boundary conditions. Finally, by the asymptotic spreading theory and the comparison principle, the non-existence of invasion traveling waves with speed $c 参考文献 | 相关文章 | 计量指标
CENTRAL LIMIT THEOREM AND MODERATE DEVIATIONS FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
胡淑兰, 李瑞囡, 王新宇
数学物理学报(英文版). 2020 (5):  1477-1494.  DOI: 10.1007/s10473-020-0518-6
In this paper we prove a central limit theorem and a moderate deviation principle for a class of semilinear stochastic partial differential equations, which contain the stochastic Burgers' equation and the stochastic reaction-diffusion equation. The weak convergence method plays an important role.
参考文献 | 相关文章 | 计量指标
EXISTENCE AND CONCENTRATION BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS IN $\mathbb{R}^N$
陈建华, 黄先玖, 程毕陶, 唐先华
数学物理学报(英文版). 2020 (5):  1495-1524.  DOI: 10.1007/s10473-020-0519-5
In this article, we study the generalized quasilinear Schrödinger equation \begin{equation*} -\text{div}(\varepsilon^2g^2(u)\nabla u)+\varepsilon^2g(u)g'(u)|\nabla u|^2+V(x)u=K(x)|u|^{p-2}u,\,\, x\in\mathbb{R}^N, \end{equation*} where $N\geq3$, $\varepsilon>0$, $4 < p < 22^*$, $g\in\mathcal{C}^1(\mathbb{R},\mathbb{R}^{+})$, $V\in \mathcal{C}(\mathbb{R}^N)\cap L^\infty(\mathbb{R}^N)$ has a positive global minimum, and $K\in \mathcal{C}(\mathbb{R}^N)\cap L^\infty(\mathbb{R}^N)$ has a positive global maximum. By using a change of variable, we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.
参考文献 | 相关文章 | 计量指标
DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL
马琳洁, 刘斌
数学物理学报(英文版). 2020 (5):  1525-1552.  DOI: 10.1007/s10473-020-0520-z
In this article, we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model, which describes the interaction between populations of prey and predator, and takes into account the economic interest. We firstly obtain the solvability condition and the stability of the model system, and discuss the singularity induced bifurcation phenomenon. Next, we introduce a state feedback controller to eliminate the singularity induced bifurcation phenomenon, and discuss the optimal control problems. Finally, numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.
参考文献 | 相关文章 | 计量指标
A LEAST SQUARE BASED WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM
祝鹏, 王筱沈
数学物理学报(英文版). 2020 (5):  1553-1562.  DOI: 10.1007/s10473-020-0521-y
This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator. Naturally, the resulting linear system is symmetric and positive definite, and thus the algorithm is easy to implement and analyze. Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh. A superconvergence result is proved when the coefficient matrix is constant or piecewise constant. Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.
参考文献 | 相关文章 | 计量指标
PARAMETERS IDENTIFICATION IN A SALTWATER INTRUSION PROBLEM
李季, Carole ROSIER
数学物理学报(英文版). 2020 (5):  1563-1584.  DOI: 10.1007/s10473-020-0522-x
This article is devoted to the identification, from observations or field measurements, of the hydraulic conductivity K for the saltwater intrusion problem in confined aquifers. The involved PDE model is a coupled system of nonlinear parabolic-elliptic equations completed by boundary and initial conditions. The main unknowns are the saltwater/ freshwater interface depth and the freshwater hydraulic head. The inverse problem is formulated as an optimization problem where the cost function is a least square functional measuring the discrepancy between experimental data and those provided by the model. Considering the exact problem as a constraint for the optimization problem and introducing the Lagrangian associated with the cost function, we prove that the optimality system has at least one solution. Moreover, the first order necessary optimality conditions are established for this optimization problem.
参考文献 | 相关文章 | 计量指标
POSITIVE SOLUTIONS AND INFINITELY MANY SOLUTIONS FOR A WEAKLY COUPLED SYSTEM
段雪亮, 魏公明, 杨海涛
数学物理学报(英文版). 2020 (5):  1585-1601.  DOI: 10.1007/s10473-020-0523-9
We study a Schrödinger system with the sum of linear and nonlinear couplings. Applying index theory, we obtain infinitely many solutions for the system with periodic potentials. Moreover, by using the concentration compactness method, we prove the existence and nonexistence of ground state solutions for the system with close-to-periodic potentials.
参考文献 | 相关文章 | 计量指标
RETRACTION NOTE: “MINIMAL PERIOD SYMMETRIC SOLUTIONS FOR SOME HAMILTONIAN SYSTEMS VIA THE NEHARI MANIFOLD METHOD”
Editorial Office of Acta Mathematica Scientia
数学物理学报(英文版). 2020 (5):  1602-1602.  DOI: 10.1007/s10473-020-0524-8
参考文献 | 相关文章 | 计量指标