Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (2): 338-346.doi: 10.1007/s10473-025-0204-9

Previous Articles     Next Articles

THE GLOBAL DYNAMICS OF A 3-DIMENSIONAL DIFFERENTIAL SYSTEM IN R3 VIA A DARBOUX INVARIANT

Jaume Llibre1,*, Claudia Valls2   

  1. 1. Departament de Matematiques, Universitat Autò-noma de Barce-lona, 08193 Bellaterra, Barcelona, Catalonia, Spain;
    2. Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
  • Received:2023-04-20 Online:2025-03-25 Published:2025-05-08
  • Contact: *Jaume Llibre,E-mail: jaume.llibre@uab.cat
  • About author:Claudia Valls, E-mail: cvalls@math.ist.utl.pt
  • Supported by:
    The first author's research was partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00, the H2020 European Research Council grant MSCA-RISE-2017-777911, AGAUR (Generalitat de Catalunya) grant 2021SGR00113 and the Reial Acadèmia de Ciències i Arts de Barcelona. The second author's research was partially supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

Abstract: The differential system ˙x=axyz, ˙y=by+xz, ˙z=cz+x2, where a, b and c are positive real parameters, has been studied numerically due to the big variety of strange attractors that it can exhibit. This system has a Darboux invariant when c=2b. Using this invariant and the Poincaré compactification technique we describe analytically its global dynamics.

Key words: invariant, Poincaré ball, Poincaré disc, ω-limit, α-limit, differential system in R3

CLC Number: 

  • 34C29
Trendmd