Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (6): 2111-2124.doi: 10.1007/s10473-024-0604-2
Previous Articles Next Articles
Changyu GUO1,2, Changlin XIANG3,†, Gaofeng ZHENG4
Received:
2023-10-08
Revised:
2024-06-03
Published:
2024-12-06
Contact:
† Changlin XIANG, E-mail : changlin.xiang@ctgu.edu.cn
About author:
Changyu GUO, E-mail : changyu.guo@sdu.edu.cn; Gaofeng ZHENG, E-mail : gfzheng@ccnu.edu.cn
Supported by:
CLC Number:
Changyu GUO, Changlin XIANG, Gaofeng ZHENG. REFINED CONSERVATION LAW FOR AN EVEN ORDER ELLIPTIC SYSTEM WITH ANTISYMMETRIC POTENTIAL[J].Acta mathematica scientia,Series B, 2024, 44(6): 2111-2124.
[1] Adams R C, Fournier J F. Sobolev Spaces. Amsterdam: Elsevier/Academic Press, 2003 [2] Bauer W, Isralowitz J. Compactness characterization of operators in the Toeplitz algebra of the Fock space. J Funct Anal, 2012, 263: 1323-1355 [3] Chang S Y A, Wang L, Yang P C. A regularity theory of biharmonic maps. Commun Pure Appl Math, 1999, 52: 1113-1137 [4] Coifman R, Lions P L, Meyer Y, Semmes S. Compensated compactness and Hardy spaces. J Math Pures Appl, 1993, 72: 247-286 [5] de Longueville F L, Gastel A. Conservation laws for even order systems of polyharmonic map type. Calc Var Partial Differential Equations, 2021, 60: Art 138 [6] Garrido-Atienza M J, Marín-Rubio P. Navier Stokes equations with delays on unbounded domains. Nonlinear Anal, 2006, 64: 1100-1118 [7] Gastel A, Scheven C. Regularity of polyharmonic maps in the critical dimension. Comm Anal Geom, 2009, 17: 185-226 [8] Guo C Y, Wang C, Xiang C L. $L^p$-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions. Calc Var Partial Differential Equations, 2023, 62: Art 31 [9] Guo C Y, Xiang C L. Regularity of solutions for a fourth order linear system via conservation law. J Lond Math Soc, 2020, 101: 907-922 [10] Guo C Y, Xiang C L. Regularity of weak solutions to higher order elliptic systems in critical dimensions. Tran Amer Math Soc, 2021, 374: 3579-3602 [11] Guo C Y, Xiang C L. Conservation law for harmonic mappings in supercritical dimensions. Comptes Rendus Mathématique, 2024, 362(G7): 769-773 [12] Guo C Y, Xiang C L, Zheng G F. The Lamm-Riviere system I: $L^p$ regularity theory. Calc Var Partial Differential Equations, 2021, 60: Art 213 [13] Guo C Y, Xiang C L, Zheng G F. $L^p$ regularity theory for even order elliptic systems with antisymmetric first order potentials. J Math Pure Appl, 2022, 165: 286-324 [14] Goldstein P, Strzelecki P, Zatorska-Goldstein A. On polyharmonic maps into spheres in the critical dimension. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 1387-1405 [15] Hélein F. Harmonic Maps, Conservation Laws and Moving Frames. Cambridge: Cambridge University Press, 2002 [16] Hörter J, Lamm T. Conservation laws for even order elliptic systems in the critical dimensions-a new approach. Calc Var Partial Differential Equations, 2021, 60: Art 125 [17] Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm Partial Differential Equations, 2008, 33: 245-262 [18] Lamm T, Wang C. Boundary regularity for polyharmonic maps in the critical dimension. Adv Calc Var, 2009, 2: 1-16 [19] Málek J, Nečas J, Rokyta M, Ruička M. Weak and Measure-valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996 [20] Rivière T. Everywhere discontinuous harmonic maps into spheres. Acta Math, 1995, 175: 197-226 [21] Rivière T. Conservation laws for conformally invariant variational problems. Invent Math, 2007, 168: 1-22 [22] Rivière T. Analysis aspects of Willmore surfaces. Invent Math, 2008, 174: 1-45 [23] Rivière T. The role of integrability by compensation in conformal geometric analysis. Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons and computer imaging. Soc Math France, Paris, Sémin Congr, 2011, 22: 93-127 [24] Rivière T. Conformally invariant variational problems. Lecture notes at ETH Zurich, available at https://people.math.ethz.ch/riviere/lecture-notes, 2012 [25] Rivière T, Struwe M. Partial regularity for harmonic maps and related problems. Comm Pure Appl Math, 2008, 61: 451-463 [26] Schwarz G. Hodge Decomposition--a Method for Solving Boundary Value Problems. Berlin: Springer-Verlag, 1995 [27] Sharp B, Topping P. Decay estimates for Rivière's equation, with applications to regularity and compactness. Trans Amer Math Soc, 2013, 365: 2317-2339 [28] Shatah J. Weak solutions and development of singularities of the SU(2) $\sigma$-model. Commun Pure Appl Math, 1988, 41: 459-469 [29] Struwe M. Partial regularity for biharmonic maps, revisited. Calc Var Partial Differential Equations, 2008, 33: 249-262 [30] Uhlenbeck K. Connections with $L^p$ bounds on curvature. Comm Math Phys, 1982, 83: 31-42 [31] Wang C Y. Biharmonic maps from $R^4$ into a Riemannian manifold. Math Z, 2004, 247: 65-87 [32] Wang C Y. Stationary biharmonic maps from $R^m$ into a Riemannian manifold. Comm Pure Appl Math, 2004, 57: 419-444 [33] Wente H C. An existence theorem for surfaces of constant mean curvature. J Math Anal Appl, 1969, 26: 318-344 [34] Xiang C L, Zheng G F. Sharpe Meorry regularity theory for a fourth order geometrical equation. Acta Math Sci, 2024, 44B(2): 420-430 [35] Ziemer W P. Weakly Differentiable Functions. New York: Springer-Verlag, 1989 |
[1] | Zihou ZHANG, Jing ZHOU. THREE KINDS OF DENTABILITIES IN BANACH SPACES AND THEIR APPLICATIONS [J]. Acta mathematica scientia,Series B, 2024, 44(2): 445-454. |
[2] | Fen HE, Zhen WANG, Tingting CHEN. THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1717-1734. |
[3] | Fei WU, Zejun WANG, Fangqi CHEN. THE GLOBAL EXISTENCE OF BV SOLUTIONS OF THE ISENTROPIC p-SYSTEM WITH LARGE INITIAL DATA∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1668-1674. |
[4] | Jianli LIU, Jie XUE. GLOBAL SIMPLE WAVE SOLUTIONS TO A KIND OF TWO DIMENSIONAL HYPERBOLIC SYSTEM OF CONSERVATION LAWS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 261-271. |
[5] | Ting ZHANG, Wancheng SHENG. GLOBAL SOLUTIONS OF THE PERTURBED RIEMANN PROBLEM FOR THE CHROMATOGRAPHY EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 57-82. |
[6] | Zejun WANG, Qi ZHANG. FINITE TIME EMERGENCE OF A SHOCK WAVE FOR SCALAR CONSERVATION LAWS VIA [J]. Acta mathematica scientia,Series B, 2019, 39(1): 83-93. |
[7] | Shujun LIU, Fangqi CHEN, Zejun WANG. EXISTENCE OF GLOBAL L∞ SOLUTIONS TO A GENERALIZED n×n HYPERBOLIC SYSTEM OF LEROUX TYPE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 889-897. |
[8] | Chunyan LIU, Zihou ZHANG, Yu ZHOU. A NOTE IN APPROXIMATIVE COMPACTNESS AND MIDPOINT LOCALLY K-UNIFORM ROTUNDITY IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(2): 643-650. |
[9] | Corrado MASCIA. TWENTY-EIGHT YEARS WITH “HYPERBOLIC CONSERVATION LAWS WITH RELAXATION” [J]. Acta mathematica scientia,Series B, 2015, 35(4): 807-831. |
[10] | Debora AMADORI, Paolo BAITI, Andrea CORLI, Edda DAL SANTO. GLOBAL EXISTENCE OF SOLUTIONS FOR A MULTI-PHASE FLOW: A BUBBLE IN A LIQUID TUBE AND RELATED CASES [J]. Acta mathematica scientia,Series B, 2015, 35(4): 832-854. |
[11] | Gaowei CAO, Kai HU, Xiaozhou YANG. FORMULA OF GLOBAL SMOOTH SOLUTION FOR NON-HOMOGENEOUS M-D CONSERVATION LAW WITH UNBOUNDED INITIAL VALUE [J]. Acta mathematica scientia,Series B, 2015, 35(2): 508-526. |
[12] | Adil JHANGEER. CONSERVATION LAWS FOR THE (1 + 2)-DIMENSIONAL WAVE EQUATION IN BIOLOGICAL ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1255-1268. |
[13] | Rinaldo M. Colombo, Magali L′ecureux-Mercier. NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 177-196. |
[14] | Debora Amadori, M. Di Francesco. THE ONE-DIMENSIONAL HUGHES MODEL FOR EDESTRIAN FLOW: RIEMANN-TYPE SOLUTIONS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 259-280. |
[15] | Geng Chen, Robin Young. THE VACUUM IN NONISENTROPIC GAS DYNAMICS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 339-351. |
|