[1] Balinsky A A, Evans W D.Some recent results on Hardy-type inequalities. Appl Math Inf Sci, 2010, 4(2): 191-208 [2] Chen Q, Jost J, Wang G.Nonlinear dirac equations on Riemann surfaces. Ann Global Anal Geom, 2008, 33(3): 253-270 [3] Jost J, Liu L, Zhu M. Asymptotic analysis for Dirac-harmonic maps from degenerating spin surfaces and with bounded index. Calc Var Partial Differential Equations, 2019, 58(4): Art 142 [4] Jost J, Liu L, Zhu M. Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow. Calc Var Partial Differential Equations, 2017, 56(4): Art 108 [5] Liu L.No neck for Dirac-harmonic maps. Calc Var Partial Differential Equations, 2015, 52(1/2): 1-15 [6] Liu L, Yin H.Neck analysis for biharmonic maps. Math Z, 2016, 283(3/4): 807-834 [7] Taimanov I A.The two-dimensional Dirac operator and the theory of surfaces (Russian, with Russian summary), Uspekhi Mat Nauk, 2006, 61(1): 85-164; English transl, Russian Math Surveys, 2006, 61(1): 79-159 [8] Wang C Y.A remark on nonlinear Dirac equations. Proc Amer Math Soc, 2010, 138(10): 3753-3758 [9] Zhu M M.Dirac-harmonic maps from degenerating spin surfaces I: The Neveu-Schwarz case. Calc Var Partial Differential Equations, 2009, 35(2): 169-189 [10] Zhu M M.Harmonic maps from degenerating Riemann surfaces. Math Z, 2010, 264(1): 63-85 [11] Zhu M M.Quantization for a nonlinear Dirac equation. Proc Amer Math Soc, 2016, 144(10): 4533-4544 |