数学物理学报

• 论文 • 上一篇    下一篇

一种Cauchy型主值积分的求积公式的一致收敛性

蔡好涛;   

  1. 曲阜师范大学数学科学学院 山东曲阜 273165;

    中国科学院数学与系统科学研究院 北京 100080

  • 收稿日期:2004-03-30 修回日期:2005-04-10
  • 通讯作者: 蔡好涛
  • 基金资助:
    国家自然科学基金(No.1022002)

On the Uniform Convergence of a Kind Quadrature Rule for

Cauchy Type Singular Integrals

Cai Haotao;   

  1. Department of Mathematics, Qufu Normal University, Qufu 273165;

    Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080

  • Received:2004-03-30 Revised:2005-04-10
  • Contact: Cai Haotao

摘要: 该文首先给出Cauchy型主值积分φ(wf,x)的一种求积公式φm*(wf,x),然后证明序列$φm*(wf,x)}m=2在整个闭区间[-1,1]上是一致收敛到Cauchy型主值积分φ(wf,x)的,同时给出它的误差界.

关键词: Cauchy型主值积分, Dini条件, 广义Jacobi权函数

Abstract: In this paper, the author first gives a kind quadrature rule $\Phi_m^{*}(wf,x)$ for Cauchy type singular integral $\Phi(wf,x)$, then proves the sequence $\{\Phi_m^{*}(wf,x)\}_{m=2}^{\infty}$ is uniformly convergent to $\Phi(wf,x)$ on the interval $[-1,1]$, at that time gives its error bounds.

Key words: Cauchy type singular integral, Dini conditions, Generalized Jacobi weight.

中图分类号: 

  • 45E10