[1] Bakhtawar A, Feng J. Increasing rate of weighted product of partial quotients in continued fractions. Chaos Solitons Fractals, 2023, 172: Art 113591 [2] Bakhtawar A, Bos P, Hussain M. Hausdorff dimension of an exceptional set in the theory of continued fractions. Nonlinearity, 2020, 33: 2615-2639 [3] Bakhtawar A, Bos P, Hussain M. The sets of Dirichlet non-improvable numbers versus well-approximable numbers. Ergodic Theory Dynam Systems, 2020, 40: 3217-3235 [4] Bos P, Hussain M, Simmons D. The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers. Proc Amer Math Soc, 2023, 151: 1823-1838 [5] Bosma W, Dajani K, Kraaikamp C. Entropy quotients and correct digits in number-theoretic expansions. IMS Lecture Notes Monogr Ser: Dynamics & Stochastics, 2006, 48: 176-188 [6] Davenport H, Schmidt W.Dirichlet's theorem on diophantine approximation//Symposia Mathematica. London: Academic Press, 1970: 113-132 [7] Falconer K.Techniques in Fractal Geometry. New York: Wiley, 1997 [8] Fan A, Liao L, Wang B, Wu J. On Khintchine exponents and Lyapunov exponents of continued fractions. Ergodic Theory Dynam Systems, 2009, 29: 73-109 [9] Fang L, Ma J, Song K, Wu M.Multifractal analysis of the convergence exponent in continued fractions. Acta Math Sci, 2021, 41B: 1896-1910 [10] Feng J, Xu J. Sets of Dirichlet non-improvable numbers with certain order in the theory of continued fractions. Nonlinearity, 2021, 34: 1598-1611 [11] Good I. The fractional dimensional theory of continued fractions. Proc Cambridge Philos Soc, 1941, 37: 199-228 [12] Hu H, Hussain M, Yu Y. Limit theorems for sums of products of consecutive partial quotients of continued fractions. Nonlinearity, 2021, 34: 8143-8173 [13] Huang L, Wu J. Uniformly non-improvable Dirichlet set via continued fractions. Proc Amer Math Soc, 2019, 147: 4617-4624 [14] Huang L, Wu J, Xu J. Metric properties of the product of consecutive partial quotients in continued fractions. Israel J Math, 2020, 238: 901-943 [15] Hussain M, Kleinbock D, Wadleigh N, Wang B. Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika, 2018, 64: 502-518 [16] Iosifescu M, Kraaikamp C.Metrical Theory of Continued Fractions. Dordrecht: Kluwer Academic Publishers, 2002 [17] Jaffard S, Martin B. Multifractal analysis of the Brjuno function. Invent Math, 2018, 212: 109-132 [18] Jarník V. Zur metrischen Theorie der diopahantischen Approximationen. Proc Mat Fyz, 1928, 36: 91-106 [19] Kesseböhmer M, Stratmann B. Fractal analysis for sets of non-differentiability of Minkowski's question mark function. J Number Theory, 2008, 128: 2663-2686 [20] Khintchine A. Continued Fractions.Chicago: The University of Chicago Press, 1964 [21] Kleinbock D, Wadleigh N. A zero-one law for improvements to Dirichlet's Theorem. Proc Amer Math Soc, 2018, 146: 1833-1844 [22] Nicolay S, Simons L. About the multifractal nature of Cantor's bijection: bounds for the Hölder exponent at almost every irrational point. Fractals, 2016, 24: Art 1650014 [23] Pollicott M, Weiss H. Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Comm Math Phys, 1999, 207: 145-171 [24] Pólya G, Szegö G.Problems and Theorems in Analysis I: Series, Integral Calculus, Theory of Functions. Berlin: Springer-Verlag, 1972 [25] Ramharter G. Eine Bemerkungüber gewisse Nullmengen von Kettenbrüchen. Ann Univ Sci Budapest Eötvös Sect Math, 1985, 28: 11-15 [26] Zhang L. Set of extremely Dirichlet non-improvable points. Fractals, 2020, 28: Art 2050034 |