[1] Roos H G, Stynes M, Tobiska L.Robust Numerical Methods for Singularly Perturbed Differential Equations. Berlin: Springer-Verlag, 2008 [2] Stynes M, Stynes D. Convection-Diffusion Problems.Providence, RI: American Mathematical Society, 2018 [3] Gracia J L, Lisbona F J, O'Riordan E. A coupled system of singularly perturbed parabolic reaction-diffusion equations. Adv Comput Math, 2010, 32(1): 43-61 [4] Linß T. Layer-adapted meshes for convection-diffusion problems. Comput Meth Appl Mech Engi, 2003, 192(9/10): 1061-1105 [5] Linß T. Analysis of a FEM for a coupled system of singularly perturbed reaction-diffusion equations. Numer Algorithms, 2009, 50(3): 283-291 [6] Roos H G. Layer-adapted grids for singular perturbation problems. ZAMM, 1998, 78(5): 291-309 [7] Roos H G, Linß. Sufficient conditions for uniform convergence on layer-adapted grids. Comput, 1999, 63(1): 27-45 [8] Du G. Expandable parallel finite element methods for linear elliptic problems. Acta Math Sci, 2020, 40B(2): 572-588 [9] Stynes M, Tobiska L. The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J Numer Anal, 2003, 41(5): 1620-1642 [10] Liu X, Zhang J. Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers. Numer Algorithms, 2018, 78(2): 465-483 [11] Franz S, Linß. Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problem with characteristic layers. Numer Meth Part Diff Equa, 2008, 24(1): 144-164 [12] Li J. Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems. Appl Numer Math, 2001, 36(2/3): 129-154 [13] Liu X, Stynes M, Zhang J. Supercloseness of edge stabilization on Shishkin rectangular meshes for convection-diffusion problems with exponential layers. IMA J Numer Anal, 2018, 38(4): 2105-2122 [14] Zhang J, Stynes M. Supercloseness of continuous interior penalty method for convection-diffusion problems with characteristic layers. Comput Meth Appl Mech Engi, 2017, 319: 549-566 [15] Zhang Z. Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math Comp, 2003, 72(243): 1147-1177 [16] Linß T.Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Berlin: Springer, 2010 [17] Roos H G, Stynes M. Some open questions in the numerical analysis of singularly perturbed differential equations. Comput Meth Appl Math, 2015, 15(4): 531-550 [18] Zhang J, Liu X. Supercloseness of linear finite element method on Bakhvalov-type meshes for singularly perturbed convection-diffusion equation in 1D. Appl Math Lett, 2021, 111: 106624 [19] Roos H G. Error estimates for linear finite elements on Bakhvalov-type meshes. Appl Math, 2006, 51(1): 63-72 [20] Zhang J, Liu X. Optimal order of uniform convergence for finite element method on Bakhvalov-type meshes. J Sci Comput, 2020, 85(1): Art 2 [21] Zhang J, Liu X. Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes. Numer Algorithms, 2023, 92(3): 1553-1570 [22] Zhang J, Lv Y. Supercloseness of finite element method on a Bakhvalov-type mesh for a singularly perturbed problem with two parameters. Appl Numer Math, 2022, 171: 329-352 [23] Roos H G, Schopf M. Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D. Appl Math, 2012, 57: 97-108 [24] Zhang J, Liu X. Convergence of a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion equation in 2D. Numer Meth Part Diff Equa, 2023, 39(2): 1201-1219 [25] Liu X, Zhang J. Uniform convergence of optimal order for a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion equation with parabolic layers. Numer Algorithms, 2023, 94: 459-478 [26] Kellogg R B, Stynes M. Corner singularities and boundary layers in a simple convection-diffusion problem. J Diff Equa, 2005, 213(1): 81-120 [27] Kellogg R B, Stynes M. Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem. Appl Math Lett, 2007, 20(5): 539-544 [28] Brenner S C, Scott L.The Mathematical Theory of Finite Element Methods. New York: Springer, 2008 [29] Guo W, Stynes M. Pointwise error estimates for a streamline diffusion scheme on a Shishkin mesh for a convection-diffusion problem. IMA J Numer Anal, 1997, 17(1): 29-59 [30] Lin Q, Yan N.Construction and Analysis of High Efficient Finite Elements. Baoding: Hebei University Press, 1996 [31] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems. Acta Numer, 2005, 14: 1-137 |