[1] Lüroth J. Ueber eine eindeutige entwickelung von zahlen in eine unendliche reihe. Math Ann, 1883, 21:411-423
[2] Van der Waerden B L. Beweis einer Baudetschen Vermutung. Nieuw Arch Wisk, 1927, 15:212-216
[3] Green B, Tao T. The primes contain arbitrarily long arithmetic progressions. AnnMath, 2008, 167:481-547
[4] Shen L M, Fang K. The fractional dimensional theory in Lüroth expansion. Czech Math J, 2011, 61:795-807
[5] Dajani K, Kraaikamp C. Ergodic Theory of Numbers. The Carus Mathematical Monographs 29. Washigton D C:Mathematical Association of America, 2002
[6] Galambos J. Representations of Real Numbers by Infinite Series. Lecture Notes inMathematical 502. Berlin:Springer, 1976
[7] Jager H, de Vroedt C. Lüroth series and their ergodic properties. Nederl Akad Wet, Proc, Ser, 1969, 72:31-42
[8] Kesseböhmer M, Munday S, Stratmann B O. Strong renewal theorems and Lyapunov spectra for α-Farey and-Lüroth systems. Ergodic Theory Dyn Syst, 2012, 32:989-1017
[9] Shen L M, Liu Y H, Zhou Y Y. A note on a problem of J. Galambos. Turkish J Math, 2008, 32:103-109
[10] Šalát T. Zur metrischen theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech Math J, 1968, 18:489-522
[11] Wang S K, Xu J. On the Lebesgue measure of sum-level sets for Lüroth expansion. J Math Anal Appl, 2011, 374:197-200
[12] Barrionuevo J, Burton R M, Dajani K, Kraaikamp C. Ergodic properties of generalized Lüroth series. Acta Arith, 1996, 74:311-327
[13] Cao C Y, Wu J, Zhang Z L. The efficiency of approximating the reals by Lüroth expansion. Czech Math J, 2013, 63:497-513
[14] Dajani K, Kraaikamp C. On approximation by Lüroth series. J Théor Nombres Bordeaux, 1996, 8:331-346
[15] Barreiraa L, Iommi G. Frequency of digits in the Lüroth expansion. J Number Theory, 2009, 129:1479-1490
[16] Fan A H, Liao L M, Ma J H, Wang B W. Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity, 2010, 23:1185-1197
[17] Mance B, Tseng J. Bounded Lüroth expansions:applying Schmidt games where infinite distortion exists. Acta Arith, 2013, 158:33-47
[18] Falconer K J. Techniques in Fractal Geometry. Chichester:John Wiley & Sons, 1997
[19] Hu D G, Hu X H. Arbitrarily long arithmetic progressions for continued fractions of laurent series. Acta Math Sci, 2013, 33B(4):943-949
[20] Tong X,Wang BW. How many points contain arithmetic progressions in their continued fraction expansion? Acta Arith, 2009, 139:369-376 |