[1] Alt H. Linear Functional Analysis. London: Springer, 2016 [2] Akin E, Kolyada S. Li-Yorke sensitivity. Nonlinearity, 2003, 16: 1421-1433 [3] Auslander J, Yorke J. Interval maps, factors of maps,chaos. Tôhoku Math J, 1980, 32(2): 177-188 [4] Başar F, Roopaei H. Banach spaces and inequalities associated with new generalization of Cesàro matrix. Acta Math Sci, 2023, 43B(4): 1518-1536 [5] Beauzamy B.Introduction to Operator Theory and Invariant Subspaces. Amsterdam: Elsevier, 1988 [6] Bermúdez T, Bonilla A, Marttínez-Giménez F, Peris A. Li-Yorke and distributionally chaotic operators. J Math Anal Appl, 2010, 373: 83-93 [7] Bermúdez T, Bonilla A, Müller V, Peris A. Cesàro bounded operators in Banach spaces. J d'Anal Math, 2020, 140: 187-206 [8] Bernardes N C, Bonilla A, Peris A. Mean Li-Yorke chaos in Banach spaces. J Funct Anal, 2020, 278: 108343 [9] Bernardes N C, Bonilla A, Peris A, Wu X. Distributional chaos for operators on Banach spaces. J Math Anal Appl, 2018, 459: 797-821 [10] Bès j, Peris A. Hereditarily hypercyclic operators. J Funct Anal, 1999, 167: 94-112 [11] Bonet J. Dynamics of the differentiation operator on weighted spaces of entire functions. Math Z, 2009, 261: 649-657 [12] Bu S, Cai G. The well-posedness of fractional integro-differential equations in complex Banach spaces. Acta Math Sci, 2023, 43B(4): 1603-1617 [13] Conway J.A Course in Functional Analysis. New York : Springer-Verlag, 2007 [14] García-Ramos F, Li J, Zhang R. When is a dynamical system mean sensitive? Ergod Theory Dynam Syst, 2019, 39: 1608-1636 [15] García-Ramos F, Marcus B. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete Contin Dyn Syst, 2019, 39: 729-746 [16] Grosse-Erdmann K G, Peris A. Linear Chaos. London: Springer, 2011 [17] Hou B, Luo L. Some remarks on distribution chaos for bounded linear operator. Turkish J Math, 2015, 39: 251-258 [18] Huang W, Kolyada S, Zhang G. Analogues of Auslander-Yorke theorems for multi-sensitivity. Ergod Theory Dynam Syst, 2018, 38: 651-665 [19] Huang Y.Functional Analysis: An Introduction. Beijing: Science Press, 2009 [20] Li J, Tu S, Ye X. Mean equicontinuity and mean sensitivity. Ergod Theory Dynam Syst, 2015, 35: 2587-2612 [21] Li J, Ye X. Recent development of chaos theory in topological dynamics. Acta Math Sin, 2016, 32: 83-114 [22] Li J, Ye X, Yu T. Equicontinuity and Sensitivity in Mean Forms. J Differ Equ, 2022, 34: 133-154 [23] Li J, Yu T. On mean sensitive tuples. J Differ Equ, 2021, 297: 175-200 [24] Liu H, Liao L, Wang L. Thickly syndetical sensitivity of topological dynamical system. Discrete Dyn Nat Soc, 2014, 2014: Art 583431 [25] Moothathu T K S. Stronger forms of sensitivity for dynamical systems. Nonlinearity, 2007, 20: 2115-2126 [26] Müller V, Vršuovský J. Orbits of linear operators tending to infinity. Rocky Mount J Math, 2009, 39: 219-230 [27] Ruelle D. Dynamical systems with turbulent behavior. Lecture Notes in Physics, 1978, 80: 341-360 [28] Wu X, Liang S, Ma X, Lu T, Ahmadi S. The mean sensitivity and mean equicontinuity in uniform spaces. Int J Bifurc Chaos Appl Sci Eng, 2020, 30: 2050122 [29] Wu X, Zhu P. On the equivalence of four chaotic operators. Appl Math Lett, 2012, 25: 545-549 [30] Xu Q, Fang W, Feng W, Liu T. The Fekete-Szegö inequality and successive coefficients difference for a subclass of close-to-starlike mappings in complex Banach spaces. Acta Math Sci, 2023, 43B(5): 2075-2088 [31] Yan K, Zeng F. Mean proximality, mean sensitive and mean Li-Yorke chaos for amenable group actions. Int J Bifurc Chaos Appl Sci Eng, 2018, 28: 1850028 [32] Ye X, Yu T. Sensitivity, proximal extension and higher order almost automorphy. Trans Amer Math Soc, 2018, 370: 3639-3662 |