[1] Jost J, Xu C. Subelliptic harmonic maps. Trans Amer Math Soc, 1998, 350(11): 4633-4649 [2] Barletta E, Dragomir S, Urakawa H. Pseudoharmonic maps from non-degenerate CR manifolds to Riemannian manifolds. Indiana Univ Math J, 2001, 50(2): 719-746 [3] Dong Y. Eells-Sampson type theorems for subelliptic harmonic maps from sub-Riemannian manifolds. J Geom Anal, 2021, 31(4): 3608-3655 [4] Fardoun A, Ratto A. Harmonic maps with potential. Calc Var Partial Differential Equations, 1997, 5(2): 183-197 [5] Fardoun A, Ratto A, Regbaoui R. On the heat flow for harmonic maps with potential. Ann Global Anal Geom, 2000, 18(6): 555-567 [6] Chen Q. Maximum principles, uniqueness and existence for harmonic maps with potential and Landau-Lifshitz equations. Calc Var Partial Differential Equations, 1999, 8(2): 91-107 [7] Dong Y, Luo H, Yu W.On subelliptic harmonic maps with potential. arXiv:2202.06346 [8] Yau S T. Harmonic functions on complete Riemannian manifolds. Comm Pure Appl Math, 1975, 28: 201-228 [9] Cheng S Y.Liouville theorem for harmonic maps// Proc Sympos Pure Math. Providence, RI: Amer Math Soc, 1980: 147-151 [10] Chen Q. Harmonic maps with potential from complete manifolds. Chinese Sci Bull, 1998, 43(21): 1780-1786 [11] Ren Y. Gradient estimate of positive eigenfunctions of sub-Laplacian on complete pseudo-Hermitian manifolds. J Geom Phys, 2020, 149: 103577 [12] Chong T, Dong Y, Ren Y, et al. Pseudo-harmonic maps from complete noncompact pseudo-Hermitian manifolds to regular balls. J Geom Anal, 2020, 30(4): 3512-3541 [13] Choi H I. On the Liouville theorem for harmonic maps. Proc Amer Math Soc, 1982, 85(1): 91-94 [14] Zou W. Gradient estimate of subelliptic harmonic maps on sub-Riemannnian manifolds. Advances in Applied Mathematics (in Chinese), 2021, 10(11): 3912-3922 [15] Baudoin F.Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations// Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds. Zürich: Eur Math Soc, 2016: 259-321 [16] Strichartz R S. Sub-Riemannian geometry. J Differential Geom, 1986, 24(2): 221-263 [17] Nagel A, Stein E M, Wainger S. Balls and metrics defined by vector fields I: Basic properties. Acta Math, 1985, 155(1/2): 103-147 [18] Baudoin F, Feng Q.Log-sobolev inequalities on the horizontal path space of a totally geodesic foliation. arXiv:1503.08180 [19] Gromoll D, Walschap G.Metric Foliations and Curvature. Basel: Birkhäuser, 2009 [20] Agrachev A, Lee P W Y. Bishop and Laplacian comparison theorems on three-dimensional contact sub-Riemannian manifolds with symmetry. J Geom Anal, 2015, 25(1): 512-535 [21] Baudoin F, Grong E, Kuwada K, et al. Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations. Calc Var Partial Differential Equations, 2019, 58(4): Art 130 [22] Chang S C, Kuo T J, Lin C, et al. CR sub-Laplacian comparison and Liouville-type theorem in a complete noncompact Sasakian manifold. J Geom Anal, 2019, 29(2): 1676-1705 [23] Lee P W, Li C. Bishop and Laplacian comparison theorems on Sasakian manifolds. Comm Anal Geom, 2018, 26(4): 915-954 [24] Huang X, Yu W.A generalization of the schwarz lemma for transversally harmonic maps. arXiv:2205.11774 |