[1] Artin E. Quadratische K¨orper im Gebiete der H¨oheren Kongruenzen I-II. Math Z, 1924, 19: 153–246
[2] Lasjaunias A. A survey of Diophantine approximation in fields of power series. Monatsh Math, 2000, 130: 211–229
[3] Schmidt W M. On continued fractions and Diophantine approximation in power series fields. Acta Arith, 2000, 95: 139–166
[4] Berth´e V, Nakada H. On continued fraction expansions in positive characteristic: equivalence relations and some metric properties. Expo Math, 2000, 18: 257–284
[5] Kristensen S. On well-approximable matrices over a field of formal series. Math Proc Cambridge Philos Soc, 2003, 135: 255–268
[6] Hu X H, Wang B W, Wu J, Yu Y L. Cantor sets determined by partial quotients of continued fractions of Laurent series. Finite Fields Appl, 2008, 14: 417–437
[7] Wu J. On the sum of degrees of digits occurring in continued fraction expansions of Laurent series. Math Proc Camb Philo Soc, 2005, 138: 9–20
[8] Wu J. Hausdorff dimensions of bounded type continued fraction sets of Laurent series. Finite Fields Appl, 2007, 13: 20–30
[9] Niederreiter H. The probabilistic theory of linear complexity//G¨unther C G. Advances in Cryptology-EUROCRYPT’88. Lecture Note in Computer Science 330. New York: Springer-Verlag, 1988: 191–209
[10] Niederreiter H, Vielhaber M. Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles. J Complexity, 1997, 13: 353–383
[11] Van der Waerden B L. Beweis einer Baudetschen Vermutung. Nieuw Arch Wisk, 1927, 15: 212–216
[12] Szemer´edi E. On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 299–345
[13] Furstenberg H. Ergodic behavior of diagonal measures and a theorem of Szemer’edi on arithmetic progressions. J Anal Math, 1977, 31: 204–256
[14] Green B, Tao T. The primes contain arbitrarily long arithmetic progressions. Ann Math, 2008, 167: 481–547
[15] Feng D J, Wu J. The Hausdorff dimension of recurrent sets in symbolic spaces. Nonlinearity, 2001, 14: 81–85
[16] Tong X, Wang B W. How many points contain arithmetic progressions in their continued fraction expansion? Acta Arith, 2009, 139: 369–376
[17] Falconer K J. Techniques in Fractal Geometry. Wiley, 1997. |